論文の概要: Neural general circulation models optimized to predict satellite-based precipitation observations
- arxiv url: http://arxiv.org/abs/2412.11973v1
- Date: Mon, 16 Dec 2024 16:55:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:54:32.939973
- Title: Neural general circulation models optimized to predict satellite-based precipitation observations
- Title(参考訳): 衛星による降雨観測の予測に最適化されたニューラル一般循環モデル
- Authors: Janni Yuval, Ian Langmore, Dmitrii Kochkov, Stephan Hoyer,
- Abstract要約: 衛星による降水観測を直接訓練したハイブリッドモデルを提案する。
我々のアプローチは、バイアスの低減、より現実的な降水分布、極度の表現の改善をもたらす。
ECMWFアンサンブルの中間降水予測を上回っている。
- 参考スコア(独自算出の注目度): 2.4607544620286257
- License:
- Abstract: Climate models struggle to accurately simulate precipitation, particularly extremes and the diurnal cycle. Here, we present a hybrid model that is trained directly on satellite-based precipitation observations. Our model runs at 2.8$^\circ$ resolution and is built on the differentiable NeuralGCM framework. The model demonstrates significant improvements over existing general circulation models, the ERA5 reanalysis, and a global cloud-resolving model in simulating precipitation. Our approach yields reduced biases, a more realistic precipitation distribution, improved representation of extremes, and a more accurate diurnal cycle. Furthermore, it outperforms the mid-range precipitation forecast of the ECMWF ensemble. This advance paves the way for more reliable simulations of current climate and demonstrates how training on observations can be used to directly improve GCMs.
- Abstract(参考訳): 気候モデルは降水、特に極端と日周期を正確にシミュレートするのに苦労する。
本稿では,衛星による降水観測を直接訓練したハイブリッドモデルを提案する。
我々のモデルは2.8$^\circ$で動作し、差別化可能なNeuralGCMフレームワーク上に構築されている。
このモデルは、既存の一般的な循環モデル、ERA5の再分析、降水シミュレーションにおける大域的雲解モデルよりも大幅に改善されている。
我々のアプローチでは、バイアスの低減、より現実的な降水分布、極端な表現の改善、より正確な日周期が得られます。
さらに、ECMWFアンサンブルの中間域降水予測を上回っている。
この進歩は、現在の気候のより信頼性の高いシミュレーションの道のりを開拓し、GCMを直接改善するために観察に関するトレーニングをどのように利用できるかを示す。
関連論文リスト
- Leadsee-Precip: A Deep Learning Diagnostic Model for Precipitation [0.0]
本稿では,気象循環場から降水を生成するための地球規模の深層学習モデルであるPedsee-Precipを提案する。
このモデルは、降水量予測の課題に取り組むために、情報バランススキームを利用する。
Leadsee-Precipの降水量は観測値とより一致しており、地球規模の数値天気予報モデルと競合する性能を示している。
論文 参考訳(メタデータ) (2024-11-19T16:51:56Z) - Embedding machine-learnt sub-grid variability improves climate model biases [0.44998333629984877]
雲形成の下の表現は、気候シミュレーションに関連する長年の偏見である。
高分解能統一モデルシミュレーションで訓練された多出力ガウス過程(MOGP)を組み込むことで,これらのバイアスを克服する。
制御モデルとMLハイブリッドモデルの両方に対して10年間の予測が生成される。
論文 参考訳(メタデータ) (2024-06-13T19:35:58Z) - DiffObs: Generative Diffusion for Global Forecasting of Satellite Observations [4.653770685661304]
本研究は, 自然降雨のグローバルな進化を予測するための自己回帰的生成拡散モデル(DiffObs)を提案する。
モデルは, 日頭降雨の確率論的予測のために訓練されているが, 複数ヶ月のロールアウトには安定であり, 熱帯における対流結合波動モードの定性的に現実的な重ね合わせが明らかである。
論文 参考訳(メタデータ) (2024-04-04T05:24:22Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
我々は,AIを用いた循環型天気予報システムFengWu-4DVarを開発した。
FengWu-4DVarは観測データをデータ駆動の天気予報モデルに組み込むことができる。
シミュレーションされた観測データセットの実験は、FengWu-4DVarが合理的な解析場を生成することができることを示した。
論文 参考訳(メタデータ) (2023-12-16T02:07:56Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Generative Modeling of High-resolution Global Precipitation Forecasts [2.1485350418225244]
GAN(Generative Adversarial Network)を用いた最先端の深層学習降水モデル(FourCastNet)のアーキテクチャとトレーニングプロセスの改善について述べる。
我々の改良は, 降水量の極端にパーセンタイルを捕捉する上で, 1~2日間のリードタイムでの予測能力において, 最先端のNWPモデルに匹敵する優れた性能を実現している。
論文 参考訳(メタデータ) (2022-10-22T17:21:16Z) - TRU-NET: A Deep Learning Approach to High Resolution Prediction of
Rainfall [21.399707529966474]
本稿では,連続的畳み込み再帰層間の新しい2次元クロスアテンション機構を特徴とするエンコーダデコーダモデルであるTRU-NETを提案する。
降雨のゼロ・スクイド・%極端事象パターンを捉えるために,条件付き連続損失関数を用いた。
実験の結果,短期降水予測ではDLモデルよりもRMSEとMAEのスコアが低いことがわかった。
論文 参考訳(メタデータ) (2020-08-20T17:27:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。