論文の概要: Fused Extended Two-Way Fixed Effects for Difference-in-Differences With Staggered Adoptions
- arxiv url: http://arxiv.org/abs/2312.05985v3
- Date: Mon, 28 Oct 2024 01:05:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 16:01:07.899510
- Title: Fused Extended Two-Way Fixed Effects for Difference-in-Differences With Staggered Adoptions
- Title(参考訳): 重み付き導入による差分差分に対する融合型2ウェイ固定効果
- Authors: Gregory Faletto,
- Abstract要約: FETWFE (Fused extended two-way fixed effect) を用いた1つのチューニングパラメータを持つ機械学習推定器を提案する。
適切な空間性仮定の下で、FETWFEは確率が1に傾向する正しい制限を特定し、効率を向上する。
シミュレーション研究におけるFETWFEの実証と実証応用について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: To address the bias of the canonical two-way fixed effects estimator for difference-in-differences under staggered adoptions, Wooldridge (2021) proposed the extended two-way fixed effects estimator, which adds many parameters. However, this reduces efficiency. Restricting some of these parameters to be equal (for example, subsequent treatment effects within a cohort) helps, but ad hoc restrictions may reintroduce bias. We propose a machine learning estimator with a single tuning parameter, fused extended two-way fixed effects (FETWFE), that enables automatic data-driven selection of these restrictions. We prove that under an appropriate sparsity assumption FETWFE identifies the correct restrictions with probability tending to one, which improves efficiency. We also prove the consistency, oracle property, and asymptotic normality of FETWFE for several classes of heterogeneous marginal treatment effect estimators under either conditional or marginal parallel trends, and we prove the same results for conditional average treatment effects under conditional parallel trends. We demonstrate FETWFE in simulation studies and an empirical application.
- Abstract(参考訳): 停滞した導入下での差分差分に対する正準二方向固定効果推定器のバイアスに対処するため、Woldridge (2021) は拡張二方向固定効果推定器を提案し、多くのパラメータを追加した。
しかし、これは効率を低下させる。
これらのパラメータのいくつかを等しく制限する(例えば、コホート内でのその後の治療効果)ことは役立つが、アドホックな制限はバイアスを再導入する可能性がある。
本研究では,FETWFE(Fused extended two-way fixed effect)という,単一チューニングパラメータを持つ機械学習推定器を提案する。
FETWFEは、適切な空間的仮定の下で、確率が1の傾向の正しい制限を識別し、効率を向上することを示す。
また, FETWFEの特異性, オラクル特性, および漸近正規性についても, 条件付きまたは辺方向の平行な傾向下での不均一な辺縁処理効果推定器を用いて検証し, 条件付き平均処理効果について同じ結果を示した。
シミュレーション研究におけるFETWFEの実証と実証応用について述べる。
関連論文リスト
- A Bayesian Semiparametric Method For Estimating Causal Quantile Effects [1.1118668841431563]
擬似分布の任意の関数を推測できる半パラメトリックな条件分布回帰モデルを提案する。
共振調整に二重バランススコアを用いることで, 単一スコアのみの調整よりも性能が向上することを示す。
提案手法をノースカロライナ出生体重データセットに適用し,母体喫煙が幼児の出生体重に与える影響を解析した。
論文 参考訳(メタデータ) (2022-11-03T05:15:18Z) - Bayesian Counterfactual Mean Embeddings and Off-Policy Evaluation [10.75801980090826]
最終治療効果の期待を推定するための3つの新しいベイズ的手法を提案する。
これらの手法は、考慮された不確実性の原因が異なるため、2つのデータソースを組み合わせることが可能である。
我々はこれらの考え方を非政治評価フレームワークに一般化する。
論文 参考訳(メタデータ) (2022-11-02T23:39:36Z) - Monotonicity and Double Descent in Uncertainty Estimation with Gaussian
Processes [52.92110730286403]
限界確率はクロスバリデーションの指標を思い起こさせるべきであり、どちらもより大きな入力次元で劣化すべきである、と一般的に信じられている。
我々は,ハイパーパラメータをチューニングすることにより,入力次元と単調に改善できることを証明した。
また、クロスバリデーションの指標は、二重降下の特徴である質的に異なる挙動を示すことも証明した。
論文 参考訳(メタデータ) (2022-10-14T08:09:33Z) - Heterogeneous Treatment Effect Bounds under Sample Selection with an Application to the Effects of Social Media on Political Polarization [0.0]
本研究では,不均一因果効果パラメータに対する境界の推定と推定手法を提案する。
この方法は、ポリシーに関連する事前処理変数の関数として条件効果境界を提供する。
フレキシブルなデバイアス/ダブルな機械学習アプローチを使って、非線形機能形式や高次元の共創者に対応しています。
論文 参考訳(メタデータ) (2022-09-09T14:42:03Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
統計的汎関数に対するガトー微分を有限差分法で近似する構成的アルゴリズムについて検討する。
本研究では,確率分布を事前知識がないが,データから推定する必要がある場合について検討する。
論文 参考訳(メタデータ) (2022-08-29T16:16:22Z) - A New Central Limit Theorem for the Augmented IPW Estimator: Variance
Inflation, Cross-Fit Covariance and Beyond [0.9172870611255595]
クロスフィッティングを用いたクロスフィッティング逆確率重み付け(AIPW)は、実際は一般的な選択肢である。
本研究では, 高次元状態における結果回帰モデルと確率スコアモデルを用いて, クロスフィット型AIPW推定器について検討する。
本研究は, メッセージパッシング理論, 決定論的等価性理論, 離脱一元的アプローチの3つの異なるツール間の新たな相互作用を利用する。
論文 参考訳(メタデータ) (2022-05-20T14:17:53Z) - Partial Identification with Noisy Covariates: A Robust Optimization
Approach [94.10051154390237]
観測データセットからの因果推論は、しばしば共変量の測定と調整に依存する。
このロバストな最適化手法により、広範囲な因果調整法を拡張し、部分的同定を行うことができることを示す。
合成および実データセット全体で、このアプローチは既存の手法よりも高いカバレッジ確率でATEバウンダリを提供する。
論文 参考訳(メタデータ) (2022-02-22T04:24:26Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
暗黙のフィードバックから学ぶことは、一流問題の難しい性質のために困難です。
ほとんどの従来の方法は、一級問題に対処するためにペアワイズランキングアプローチとネガティブサンプラーを使用します。
本論文では,ポイントワイズと同等の収束速度を実現する学習対ランクアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-11T03:38:16Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
推定対象の偏りを伴わずに高い重なりを生じさせる,デコンファウンディングスコアを導入する。
分離スコアは観測データで識別可能なゼロ共分散条件を満たすことを示す。
特に,この手法が標準正規化の魅力的な代替となることを示す。
論文 参考訳(メタデータ) (2021-04-12T18:50:11Z) - Doubly Robust Semiparametric Difference-in-Differences Estimators with
High-Dimensional Data [15.27393561231633]
不均一な治療効果を推定するための2段半パラメトリック差分差分推定器を提案する。
第1段階では、確率スコアを推定するために、一般的な機械学習手法が使用できる。
第2段階ではパラメトリックパラメータと未知関数の両方の収束率を導出する。
論文 参考訳(メタデータ) (2020-09-07T15:14:29Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。