論文の概要: Scam Detection for Ethereum Smart Contracts: Leveraging Graph Representation Learning for Secure Blockchain
- arxiv url: http://arxiv.org/abs/2412.12370v1
- Date: Mon, 16 Dec 2024 21:56:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 14:01:40.356919
- Title: Scam Detection for Ethereum Smart Contracts: Leveraging Graph Representation Learning for Secure Blockchain
- Title(参考訳): Ethereumスマートコントラクトのための詐欺検出:セキュアブロックチェーンのためのグラフ表現学習を活用する
- Authors: Yihong Jin, Ze Yang,
- Abstract要約: 本稿では,グラフ表現を利用してトランザクションパターンを調べ,不正契約を識別する革新的な手法を提案する。
提案手法は,SMOTE-ENN手法によるラベルの不均衡に対処し,Multi-Layer Perceptron (MLP) や Graph Conalvolution Networks (GCN) などのモデルを評価する。
実験結果から,本モデルがこの文脈でGCNを上回り,実世界の評価がドメイン固有分析と密接に一致していることが示唆された。
- 参考スコア(独自算出の注目度): 1.3689475854650441
- License:
- Abstract: The detection of scams within Ethereum smart contracts is a critical challenge due to their increasing exploitation for fraudulent activities, leading to significant financial and reputational damages. Existing detection methods often rely on contract code analysis or manually extracted features, which suffer from scalability and adaptability limitations. In this study, we introduce an innovative method that leverages graph representation learning to examine transaction patterns and identify fraudulent contracts. By transforming Ethereum transaction data into graph structures and employing advanced machine learning models, we achieve robust classification performance. Our method addresses label imbalance through SMOTE-ENN techniques and evaluates models like Multi-Layer Perceptron (MLP) and Graph Convolutional Networks (GCN). Experimental results indicate that the MLP model surpasses the GCN in this context, with real-world evaluations aligning closely with domain-specific analyses. This study provides a scalable and effective solution for enhancing trust and security in the Ethereum ecosystem.
- Abstract(参考訳): Ethereumスマートコントラクト内の詐欺の検出は、不正行為の搾取が増加し、経済的および評判に重大なダメージを与えるため、重要な課題である。
既存の検出方法は、しばしばスケーラビリティと適応性の制限に悩まされる契約コード分析や手動で抽出された機能に依存します。
本研究では,グラフ表現学習を利用してトランザクションパターンを調べ,不正契約を識別する革新的な手法を提案する。
Ethereumトランザクションデータをグラフ構造に変換し、高度な機械学習モデルを採用することにより、ロバストな分類性能を実現する。
提案手法は,SMOTE-ENN技術を用いてラベルの不均衡に対処し,Multi-Layer Perceptron (MLP) や Graph Convolutional Networks (GCN) などのモデルを評価する。
実験結果から,MPPモデルがこの文脈でGCNを上回り,実世界の評価がドメイン固有解析と密接に一致していることが示唆された。
この研究は、Ethereumエコシステムの信頼性とセキュリティを強化するために、スケーラブルで効果的なソリューションを提供する。
関連論文リスト
- Vulnerability Detection in Ethereum Smart Contracts via Machine Learning: A Qualitative Analysis [0.0]
スマートコントラクトに対する機械学習の脆弱性検出における技術の現状を分析する。
スマートコントラクトにおける脆弱性検出の精度,スコープ,効率を高めるためのベストプラクティスについて議論する。
論文 参考訳(メタデータ) (2024-07-26T10:09:44Z) - Facilitating Feature and Topology Lightweighting: An Ethereum Transaction Graph Compression Method for Malicious Account Detection [3.877894934465948]
Bitcoinは暗号通貨の主要なグローバルプラットフォームの一つとなり、金融エコシステムの多様化を促進する上で重要な役割を果たしている。
従来の規制手法は通常、機能エンジニアリングや大規模トランザクショングラフマイニングを通じて悪意のあるアカウントを検出する。
本稿では,TGC4Ethというトランザクショングラフ圧縮手法を提案する。
論文 参考訳(メタデータ) (2024-05-14T02:21:20Z) - VulnSense: Efficient Vulnerability Detection in Ethereum Smart Contracts
by Multimodal Learning with Graph Neural Network and Language Model [0.0]
VulnSenseはスマートコントラクトの脆弱性を効率的に検出するための包括的なアプローチである。
我々のフレームワークは、ソースコード、オプコードシーケンス、制御フローグラフを含むスマートコントラクトの3種類の機能を組み合わせています。
我々は、変換器(BERT)、双方向長短期記憶(BiLSTM)、グラフニューラルネットワーク(GNN)モデルを用いて、これらの特徴を抽出し分析する。
実験の結果,脆弱なスマートコントラクトの3つのカテゴリで平均77.96%の精度を達成し,提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-09-15T15:26:44Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
本稿では,アダプティブサンプリングとアグリゲーションに基づくグラフニューラルネットワーク(ASA-GNN)を提案する。
ノイズの多いノードをフィルタリングし、不正なノードを補うために、隣のサンプリング戦略を実行する。
3つのファイナンシャルデータセットの実験により,提案手法のASA-GNNは最先端のデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-11T07:48:39Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Explainable Ponzi Schemes Detection on Ethereum [1.3812010983144802]
ポンツィスキームは最も一般的な詐欺の一つである。
本稿では,実世界のスマートポンジ契約を検出する分類器を提案する。
優れた分類品質を保証し、AI技術を用いた分類への影響を調査する、小型で効果的な機能のセットを特定します。
論文 参考訳(メタデータ) (2023-01-12T08:38:23Z) - Blockchain Phishing Scam Detection via Multi-channel Graph
Classification [1.6980621769406918]
フィッシング詐欺検出方法は、被害者を保護し、より健全なブロックチェーンエコシステムを構築する。
ユーザのためのトランザクションパターングラフを定義し,フィッシング詐欺検出をグラフ分類タスクに変換する。
提案したマルチチャネルグラフ分類モデル(MCGC)は,対象ユーザのトランザクションパターンの特徴を抽出することにより,潜在的なフィッシングを検出することができる。
論文 参考訳(メタデータ) (2021-08-19T02:59:55Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
スーパーアプリケーションの金融サービスにおける不正行為防止のための関係グラフ畳み込みネットワーク手法の枠組みを提案する。
我々は,グラフニューラルネットワークの解釈可能性アルゴリズムを用いて,ユーザの分類タスクに対する最も重要な関係を判定する。
以上の結果から,Super-Appの代替データと高接続性で得られるインタラクションを利用するモデルには,付加価値があることが示唆された。
論文 参考訳(メタデータ) (2021-07-29T00:02:06Z) - Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion [48.744359070088166]
従来のスマートコントラクトの脆弱性検出方法は、専門家の規則に大きく依存している。
最近のディープラーニングアプローチはこの問題を軽減するが、有用な専門家の知識をエンコードすることができない。
ソースコードから専門家パターンを抽出する自動ツールを開発する。
次に、深いグラフの特徴を抽出するために、コードをセマンティックグラフにキャストします。
論文 参考訳(メタデータ) (2021-06-17T07:12:13Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。