Scam Detection for Ethereum Smart Contracts: Leveraging Graph Representation Learning for Secure Blockchain
- URL: http://arxiv.org/abs/2412.12370v3
- Date: Sun, 12 Jan 2025 05:17:53 GMT
- Title: Scam Detection for Ethereum Smart Contracts: Leveraging Graph Representation Learning for Secure Blockchain
- Authors: Yihong Jin, Ze Yang,
- Abstract summary: We use graph representation learning to observe purchase trends and find fraudulent deals.
We can achieve powerful categorisation performance by using innovative machine learning versions and transforming invoice data into graph structures.
- Score: 1.3689475854650441
- License:
- Abstract: Due to the increasing abuse of fraudulent activities that result in significant financial and reputational harm, Ethereum smart contracts face a significant problem in detecting fraud. Existing monitoring methods typically rely on lease code analysis or physically extracted features, which suffer from scalability and adaptability limitations. In this study, we use graph representation learning to observe purchase trends and find fraudulent deals. We can achieve powerful categorisation performance by using innovative machine learning versions and transforming Ethereum invoice data into graph structures. Our method addresses label imbalance through SMOTE-ENN techniques and evaluates models like Multi-Layer Perceptron ( MLP ) and Graph Convolutional Networks ( GCN). Experimental results show that the MLP type surpasses the GCN in this environment, with domain-specific assessments closely aligned with real-world assessments. This study provides a scalable and efficient way to improve Ethereum's ecosystem's confidence and security.
Related papers
- A Label-Free Heterophily-Guided Approach for Unsupervised Graph Fraud Detection [60.09453163562244]
We propose a Heterophily-guided Unsupervised Graph fraud dEtection approach (HUGE) for unsupervised GFD.
In the estimation module, we design a novel label-free heterophily metric called HALO, which captures the critical graph properties for GFD.
In the alignment-based fraud detection module, we develop a joint-GNN architecture with ranking loss and asymmetric alignment loss.
arXiv Detail & Related papers (2025-02-18T22:07:36Z) - Exact Certification of (Graph) Neural Networks Against Label Poisoning [50.87615167799367]
Machine learning models are vulnerable to label flipping, i.e., the adversarial modification (poisoning) of training labels to compromise performance.
We introduce an exact certification method, deriving both sample-wise and collective certificates.
Our work presents the first exact certificate to a poisoning attack ever derived for neural networks, which could be of independent interest.
arXiv Detail & Related papers (2024-11-30T17:05:12Z) - Facilitating Feature and Topology Lightweighting: An Ethereum Transaction Graph Compression Method for Malicious Account Detection [3.877894934465948]
Bitcoin has become one of the primary global platforms for cryptocurrency, playing an important role in promoting the diversification of the financial ecosystem.
Previous regulatory methods usually detect malicious accounts through feature engineering or large-scale transaction graph mining.
We propose an Transaction Graph Compression method named TGC4Eth, which assists malicious detection by lightweighting both features and topology of the transaction graph.
arXiv Detail & Related papers (2024-05-14T02:21:20Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - Explainable Ponzi Schemes Detection on Ethereum [1.3812010983144802]
Ponzi schemes are one of the most common scams.
In this paper, we present a classifier for detecting smart Ponzi contracts on the real-world.
We identify a small and effective set of features that ensures a good classification quality and investigate their impacts on the classification using AI techniques.
arXiv Detail & Related papers (2023-01-12T08:38:23Z) - Blockchain Phishing Scam Detection via Multi-channel Graph
Classification [1.6980621769406918]
Phishing scam detection methods will protect possible victims and build a healthier blockchain ecosystem.
We defined the transaction pattern graphs for users and transformed the phishing scam detection into a graph classification task.
The proposed multi-channel graph classification model (MCGC) is more able to detect potential phishing by extracting the transaction pattern features of the target users.
arXiv Detail & Related papers (2021-08-19T02:59:55Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
We propose a framework of relational graph convolutional networks methods for fraudulent behaviour prevention in the financial services of a Super-App.
We use an interpretability algorithm for graph neural networks to determine the most important relations to the classification task of the users.
Our results show that there is an added value when considering models that take advantage of the alternative data of the Super-App and the interactions found in their high connectivity.
arXiv Detail & Related papers (2021-07-29T00:02:06Z) - Self-supervised Incremental Deep Graph Learning for Ethereum Phishing
Scam Detection [15.350215512903361]
Graph neural network (GNN) has shown promising performance in various node classification tasks.
For transaction data, which could be naturally abstracted to a real-world complex graph, the scarcity of labels and the huge volume of transaction data make it difficult to take advantage of GNN methods.
We propose a Self-supervised Incremental Graph learning model (SIEGE) for the phishing scam detection problem.
arXiv Detail & Related papers (2021-06-18T15:06:26Z) - Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion [48.744359070088166]
Conventional smart contract vulnerability detection methods heavily rely on fixed expert rules.
Recent deep learning approaches alleviate this issue but fail to encode useful expert knowledge.
We develop automatic tools to extract expert patterns from the source code.
We then cast the code into a semantic graph to extract deep graph features.
arXiv Detail & Related papers (2021-06-17T07:12:13Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
Existing machine learning-based vulnerability detection methods are limited and only inspect whether the smart contract is vulnerable.
We propose ESCORT, the first Deep Neural Network (DNN)-based vulnerability detection framework for smart contracts.
We show that ESCORT achieves an average F1-score of 95% on six vulnerability types and the detection time is 0.02 seconds per contract.
arXiv Detail & Related papers (2021-03-23T15:04:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.