論文の概要: Dual Interpretation of Machine Learning Forecasts
- arxiv url: http://arxiv.org/abs/2412.13076v1
- Date: Tue, 17 Dec 2024 16:44:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 14:00:16.338730
- Title: Dual Interpretation of Machine Learning Forecasts
- Title(参考訳): 機械学習予測の二重解釈
- Authors: Philippe Goulet Coulombe, Maximilian Goebel, Karin Klieber,
- Abstract要約: 我々は、(カーネル)尾根回帰、ランダム森林、隆起木、ニューラルネットワークに対して、どのように重みをシームレスに回収できるかを示す。
いずれの場合も、アプローチは新しい角度からブラックボックスを開き、機械学習モデルが履歴を部分的に繰り返して活用する方法を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Machine learning predictions are typically interpreted as the sum of contributions of predictors. Yet, each out-of-sample prediction can also be expressed as a linear combination of in-sample values of the predicted variable, with weights corresponding to pairwise proximity scores between current and past economic events. While this dual route leads nowhere in some contexts (e.g., large cross-sectional datasets), it provides sparser interpretations in settings with many regressors and little training data-like macroeconomic forecasting. In this case, the sequence of contributions can be visualized as a time series, allowing analysts to explain predictions as quantifiable combinations of historical analogies. Moreover, the weights can be viewed as those of a data portfolio, inspiring new diagnostic measures such as forecast concentration, short position, and turnover. We show how weights can be retrieved seamlessly for (kernel) ridge regression, random forest, boosted trees, and neural networks. Then, we apply these tools to analyze post-pandemic forecasts of inflation, GDP growth, and recession probabilities. In all cases, the approach opens the black box from a new angle and demonstrates how machine learning models leverage history partly repeating itself.
- Abstract(参考訳): 機械学習の予測は、一般的に予測者の貢献の合計として解釈される。
しかし,それぞれのアウト・オブ・サンプル予測は,予測変数のイン・サンプル値の線形結合として表現することも可能である。
この二重ルートは、いくつかのコンテキスト(例えば、大きな断面データセット)ではどこにも導かないが、多くの回帰器とほとんど訓練されていないデータのようなマクロ経済予測を備えたスペーサー解釈を提供する。
この場合、コントリビューションのシーケンスは時系列として視覚化することができ、アナリストは予測を歴史的類推の定量化の組み合わせとして説明できる。
さらに、重みはデータポートフォリオのそれと見なすことができ、予測集中、短い位置、転倒などの新しい診断手段を刺激する。
我々は、(カーネル)尾根回帰、ランダム森林、隆起木、ニューラルネットワークに対して、どのように重みをシームレスに取得できるかを示す。
そして、これらのツールを用いてインフレ、GDP成長、景気後退確率のパンデミック後の予測を分析する。
いずれの場合も、アプローチは新しい角度からブラックボックスを開き、機械学習モデルが履歴を部分的に繰り返して活用する方法を実証する。
関連論文リスト
- Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
本稿では,強化学習に基づく学習可能なデータ拡張手法であるAutoTSAugを紹介する。
限界サンプルを学習可能なポリシーで強化することにより、AutoTSAugは予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-10T07:34:19Z) - Enhancing Mean-Reverting Time Series Prediction with Gaussian Processes:
Functional and Augmented Data Structures in Financial Forecasting [0.0]
本稿では,ガウス過程(GP)を基礎構造を持つ平均回帰時系列の予測に適用する。
GPは、平均予測だけでなく、将来の軌道上の確率分布全体を予測する可能性を提供する。
これは、不正なボラティリティ評価が資本損失につながる場合、正確な予測だけでは十分でない金融状況において特に有益である。
論文 参考訳(メタデータ) (2024-02-23T06:09:45Z) - From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks [0.0]
我々は,新しいニューラルネットワークアーキテクチャを用いて,マクロ経済密度予測のための最大推定値(MLE)を再活性化する。
ヘミスフィアニューラルネットワーク(HNN)は、可能時の主指標に基づく積極的なボラティリティ予測と、必要時の過去の予測誤差の大きさに基づく反応性ボラティリティ予測を提供する。
論文 参考訳(メタデータ) (2023-11-27T21:37:50Z) - Prediction-Powered Inference [68.97619568620709]
予測を用いた推論は、実験データセットに機械学習システムからの予測を補足した場合に有効な統計的推論を行うためのフレームワークである。
このフレームワークは、手段、量子、線形およびロジスティック回帰係数などの量に対して証明可能な信頼区間を計算するための単純なアルゴリズムを生成する。
予測による推論により、研究者は機械学習を使用して、より有効な、よりデータ効率の高い結論を導き出すことができる。
論文 参考訳(メタデータ) (2023-01-23T18:59:28Z) - A review of predictive uncertainty estimation with machine learning [0.0]
機械学習アルゴリズムを用いて予測不確実性推定の話題を概観する。
我々は確率的予測を評価するための関連する指標(一貫性スコアリング関数と適切なスコアリングルール)について論じる。
このレビューでは、ユーザーのニーズに合わせて新しいアルゴリズムを開発する方法についての理解を深める。
論文 参考訳(メタデータ) (2022-09-17T10:36:30Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Economic Recession Prediction Using Deep Neural Network [26.504845007567972]
本稿では,米国における景気後退の開始と終了を予測するための最も正確なモデルとして,オートエンコーダを用いたBi-LSTMの深層学習手法を同定する。
我々は、さまざまな機械学習モデルの能力を比較して、サンプル内とサンプル外の両方で優れた予測を生成するために、一般的なマクロおよびマーケットコンディション機能を採用する。
論文 参考訳(メタデータ) (2021-07-21T22:55:14Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
PGBM(Probabilistic Gradient Boosting Machines)は、確率的予測を生成する手法である。
既存の最先端手法と比較してPGBMの利点を実証的に示す。
論文 参考訳(メタデータ) (2021-06-03T08:32:13Z) - Explainable Artificial Intelligence: How Subsets of the Training Data
Affect a Prediction [2.3204178451683264]
データサブセットの重要性をトレーニングするためにShapley値と呼ぶ新しい方法論を提案します。
提案手法を用いて,モデルの偏りや誤ったトレーニングデータを明らかにする方法を示す。
この説明は、アルゴリズムの内部動作をより認識し、同様の予測を生成するモデルがトレーニングデータの非常に異なる部分に基づいている方法を説明することを可能にすると主張しています。
論文 参考訳(メタデータ) (2020-12-07T12:15:47Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
本稿では,新しいタイプの解釈可能な機械学習手法を提案する。
量子シフトを用いた分類モデルでは、特徴空間の予測クラスへの分割を理解するのに役立ちます。
基本的に、実際のデータポイント(または特定の関心点)を使用し、特定の特徴をわずかに引き上げたり減少させたりした後の予測の変化を観察する。
論文 参考訳(メタデータ) (2020-09-11T16:35:53Z) - Video Prediction via Example Guidance [156.08546987158616]
ビデオ予測タスクでは、将来のコンテンツとダイナミクスのマルチモーダルな性質を捉えることが大きな課題である。
本研究では,有効な将来状態の予測を効果的に行うための,シンプルで効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-03T14:57:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。