論文の概要: Previous Knowledge Utilization In Online Anytime Belief Space Planning
- arxiv url: http://arxiv.org/abs/2412.13128v2
- Date: Sat, 21 Dec 2024 15:05:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 12:13:15.286121
- Title: Previous Knowledge Utilization In Online Anytime Belief Space Planning
- Title(参考訳): オンライン空間計画における事前知識活用
- Authors: Michael Novitsky, Moran Barenboim, Vadim Indelman,
- Abstract要約: 本研究では,現在の意思決定プロセスにおける過去の計画データを活用する,計算効率のよい新しい手法を提案する。
実験結果から,本手法は高い性能を維持しながら時間を大幅に短縮することが示された。
歴史的計画情報の統合は,不確実な環境下でのオンライン意思決定の効率を大幅に向上させる可能性が示唆された。
- 参考スコア(独自算出の注目度): 8.403582577557918
- License:
- Abstract: Online planning under uncertainty remains a critical challenge in robotics and autonomous systems. While tree search techniques are commonly employed to construct partial future trajectories within computational constraints, most existing methods discard information from previous planning sessions considering continuous spaces. This study presents a novel, computationally efficient approach that leverages historical planning data in current decision-making processes. We provide theoretical foundations for our information reuse strategy and introduce an algorithm based on Monte Carlo Tree Search (MCTS) that implements this approach. Experimental results demonstrate that our method significantly reduces computation time while maintaining high performance levels. Our findings suggest that integrating historical planning information can substantially improve the efficiency of online decision-making in uncertain environments, paving the way for more responsive and adaptive autonomous systems.
- Abstract(参考訳): 不確実性の下でのオンラインプランニングは、ロボット工学と自律システムにとって重要な課題である。
木探索技術は計算制約の中で部分的な将来の軌跡を構築するために一般的に用いられているが、既存の手法のほとんどは、連続空間を考慮した以前の計画セッションから情報を排除している。
本研究では,現在の意思決定プロセスにおける過去の計画データを活用する,計算効率のよい新しい手法を提案する。
我々は情報再利用戦略の理論的基盤を提供し、このアプローチを実装するモンテカルロ木探索(MCTS)に基づくアルゴリズムを導入する。
実験により,提案手法は高い性能を維持しながら計算時間を著しく短縮することを示した。
歴史的計画情報の統合は、不確実な環境でのオンライン意思決定の効率を大幅に向上させ、より応答性が高く適応的な自律システムを実現することを示唆している。
関連論文リスト
- Meta-Gradient Search Control: A Method for Improving the Efficiency of Dyna-style Planning [8.552540426753]
本稿では,Dynaスタイルのプランニング中に状態がクエリされる確率を調整可能な,オンラインのメタグラディエントアルゴリズムを提案する。
その結果,提案手法は計画プロセスの効率化を図っている。
論文 参考訳(メタデータ) (2024-06-27T22:24:46Z) - State-Space Modeling in Long Sequence Processing: A Survey on Recurrence in the Transformer Era [59.279784235147254]
このサーベイは、シーケンシャルなデータ処理の反復モデルに基づく最新のアプローチの詳細な概要を提供する。
新たなイメージは、標準のバックプロパゲーション・オブ・タイムから外れた学習アルゴリズムによって構成される、新しいルートを考える余地があることを示唆している。
論文 参考訳(メタデータ) (2024-06-13T12:51:22Z) - MEXGEN: An Effective and Efficient Information Gain Approximation for Information Gathering Path Planning [3.195234044113248]
自律ロボットの計画アルゴリズムは、不確実性の下でのシーケンシャルな意思決定問題を解決する必要がある。
我々は,不確実な信念状態からセンサ計測を予測する難しい問題に対して,計算的に効率的かつ効果的に近似する手法を開発した。
マルチロータ型空中ロボットを用いた広範囲なシミュレーション・フィールド実験により, 電波源追尾と位置決め問題の性能向上を実証した。
論文 参考訳(メタデータ) (2024-05-04T08:09:16Z) - Learning Logic Specifications for Policy Guidance in POMDPs: an
Inductive Logic Programming Approach [57.788675205519986]
我々は任意の解法によって生成されるPOMDP実行から高品質なトレースを学習する。
我々は、データと時間効率のIndu Logic Programming(ILP)を利用して、解釈可能な信念に基づくポリシー仕様を生成する。
ASP(Answer Set Programming)で表現された学習は、ニューラルネットワークよりも優れた性能を示し、より少ない計算時間で最適な手作りタスクに類似していることを示す。
論文 参考訳(メタデータ) (2024-02-29T15:36:01Z) - Simple Hierarchical Planning with Diffusion [54.48129192534653]
拡散に基づく生成法は、オフラインデータセットによる軌跡のモデリングに有効であることが証明されている。
階層型および拡散型プランニングの利点を組み合わせた高速かつ驚くほど効果的な計画手法である階層型ディフューザを導入する。
我々のモデルは、より高いレベルで「ジャンピー」な計画戦略を採用しており、より大きな受容場を持つことができるが、計算コストは低い。
論文 参考訳(メタデータ) (2024-01-05T05:28:40Z) - Latent Properties of Lifelong Learning Systems [59.50307752165016]
本稿では,生涯学習アルゴリズムの潜伏特性を推定するために,アルゴリズムに依存しないサロゲート・モデリング手法を提案する。
合成データを用いた実験により,これらの特性を推定するためのアプローチを検証する。
論文 参考訳(メタデータ) (2022-07-28T20:58:13Z) - Learning to Control under Time-Varying Environment [18.48729114775298]
本稿では,線形時間変化(LTV)力学系における後悔の問題について検討する。
提案するオンラインアルゴリズムは, 計算に難易度を保証した最初のオンラインアルゴリズムである。
論文 参考訳(メタデータ) (2022-06-06T11:40:46Z) - Visual Learning-based Planning for Continuous High-Dimensional POMDPs [81.16442127503517]
Visual Tree Search (VTS)は、オフラインで学習した生成モデルとオンラインモデルベースのPOMDP計画を組み合わせた学習と計画の手順である。
VTSは、モンテカルロの木探索プランナーにおける画像観測の可能性を予測し評価するために、一連の深部生成観測モデルを利用することで、オフラインモデルトレーニングとオンラインプランニングを橋渡しする。
VTSは、異なる観測ノイズに対して堅牢であり、オンラインのモデルベースプランニングを利用するため、再トレーニングを必要とせずに、異なる報酬構造に適応できることを示す。
論文 参考訳(メタデータ) (2021-12-17T11:53:31Z) - Adaptive Informative Path Planning Using Deep Reinforcement Learning for
UAV-based Active Sensing [2.6519061087638014]
深層強化学習(RL)に基づく情報経路計画のための新しい手法を提案する。
本手法は,モンテカルロ木探索とオフライン学習ニューラルネットワークを組み合わせた情報知覚行動の予測を行う。
ミッション中にトレーニングされたネットワークをデプロイすることにより、限られた計算資源を持つ物理プラットフォーム上で、サンプル効率の良いオンラインリプランニングが可能になる。
論文 参考訳(メタデータ) (2021-09-28T09:00:55Z) - Experience-Based Heuristic Search: Robust Motion Planning with Deep
Q-Learning [0.0]
本稿では,Deep Q-Networkの形式でのエクスペリエンスを,探索アルゴリズムの最適ポリシとして統合する方法について述べる。
本手法は、自動運転車分野における強化学習に基づく計画の適用性について、さらなる研究を奨励する可能性がある。
論文 参考訳(メタデータ) (2021-02-05T12:08:11Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
本稿では,モンテカルロ木探索に基づくトレーニング可能なオンライン分散計画アルゴリズムを提案する。
深層学習と畳み込みニューラルネットワークを用いて正確なポリシー近似を作成可能であることを示す。
論文 参考訳(メタデータ) (2020-03-19T13:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。