論文の概要: Learning Visuotactile Estimation and Control for Non-prehensile Manipulation under Occlusions
- arxiv url: http://arxiv.org/abs/2412.13157v1
- Date: Tue, 17 Dec 2024 18:33:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 13:57:03.271354
- Title: Learning Visuotactile Estimation and Control for Non-prehensile Manipulation under Occlusions
- Title(参考訳): 咬合下の非包括的マニピュレーションのための学習的ビゾタクティル推定と制御
- Authors: Juan Del Aguila Ferrandis, João Moura, Sethu Vijayakumar,
- Abstract要約: 非包括的操作は、接触に富む環境において、器用なロボットにとって不可欠である。
本稿では,非包括的操作のためのビゾタクティル状態推定器の学習方法と不確実性を考慮した制御ポリシーを提案する。
- 参考スコア(独自算出の注目度): 10.866026182745397
- License:
- Abstract: Manipulation without grasping, known as non-prehensile manipulation, is essential for dexterous robots in contact-rich environments, but presents many challenges relating with underactuation, hybrid-dynamics, and frictional uncertainty. Additionally, object occlusions in a scenario of contact uncertainty and where the motion of the object evolves independently from the robot becomes a critical problem, which previous literature fails to address. We present a method for learning visuotactile state estimators and uncertainty-aware control policies for non-prehensile manipulation under occlusions, by leveraging diverse interaction data from privileged policies trained in simulation. We formulate the estimator within a Bayesian deep learning framework, to model its uncertainty, and then train uncertainty-aware control policies by incorporating the pre-learned estimator into the reinforcement learning (RL) loop, both of which lead to significantly improved estimator and policy performance. Therefore, unlike prior non-prehensile research that relies on complex external perception set-ups, our method successfully handles occlusions after sim-to-real transfer to robotic hardware with a simple onboard camera. See our video: https://youtu.be/hW-C8i_HWgs.
- Abstract(参考訳): 非包括的操作(non-prehensile operation)として知られる操作は、接触に富む環境において、器用なロボットにとって不可欠であるが、不動、ハイブリッド力学、摩擦の不確実性に関連する多くの課題を提起する。
さらに、接触不確実性や物体の動きがロボットから独立して進化するシナリオにおける物体の閉塞は、過去の文献では対処できない重要な問題となる。
シミュレーションで訓練された特権ポリシーからの多様なインタラクションデータを活用することにより,ビゾタクティル状態推定器の学習方法と,非包括的操作のための不確実性を考慮した制御ポリシーを提案する。
ベイズ深層学習フレームワーク内の推定器を定式化し、その不確実性をモデル化し、事前学習した推定器を強化学習(RL)ループに組み込むことで不確実性を考慮した制御ポリシーを訓練する。
したがって、複雑な外部認識のセットアップに依存する従来の非包括的研究とは異なり、本手法はシンプルなカメラを搭載したロボットハードウェアへのシミュレーテッド・トゥ・リアルトランスファー後のオクルージョンの処理に成功している。
ビデオは、https://youtu.be/hW-C8i_HWgs。
関連論文リスト
- Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks [0.24578723416255746]
ロボット工学では、現代の戦略は学習に基づくもので、複雑なブラックボックスの性質と解釈可能性の欠如が特徴である。
本稿では, 深部強化学習(DRL)に基づく衝突のない軌道プランナと, 自動調整型低レベル制御戦略を統合することを提案する。
論文 参考訳(メタデータ) (2024-02-04T15:54:03Z) - Learning Extrinsic Dexterity with Parameterized Manipulation Primitives [8.7221770019454]
我々は、オブジェクトのポーズを変えるために環境を利用する一連のアクションを学習する。
我々のアプローチは、オブジェクトとグリップと環境の間の相互作用を利用してオブジェクトの状態を制御することができる。
拘束されたテーブルトップワークスペースから様々な重量,形状,摩擦特性の箱状物体を選別する手法の評価を行った。
論文 参考訳(メタデータ) (2023-10-26T21:28:23Z) - Learning Vision-based Pursuit-Evasion Robot Policies [54.52536214251999]
我々は、部分的に観察可能なロボットの監督を生成する完全観測可能なロボットポリシーを開発する。
我々は、RGB-Dカメラを搭載した4足歩行ロボットに、野生での追従回避のインタラクションにポリシーを展開させる。
論文 参考訳(メタデータ) (2023-08-30T17:59:05Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
強化学習はそのようなロボットコントローラを開発するための強力なフレームワークである。
分類分布を用いたマルチモーダル探索手法を提案する。
学習したポリシは外部の障害や観測ノイズに対して堅牢であり、複数のプッシュ器でタスクにスケールできることが示される。
論文 参考訳(メタデータ) (2023-08-04T16:55:00Z) - Adaptive Robust Model Predictive Control via Uncertainty Cancellation [25.736296938185074]
本稿では,動的に重要な不確かさを補う学習に基づく頑健な予測制御アルゴリズムを提案する。
我々は、一定の等価な「推定とキャンセル」制御法に着想を得た、非線形フィードバックポリシーのクラスを最適化する。
論文 参考訳(メタデータ) (2022-12-02T18:54:23Z) - H-SAUR: Hypothesize, Simulate, Act, Update, and Repeat for Understanding
Object Articulations from Interactions [62.510951695174604]
The Hypothesize, Simulate, Act, Update, and Repeat (H-SAUR) is a probabilistic generative framework that generated hypotheses about objects articulate given input observed。
提案手法は,現在最先端のオブジェクト操作フレームワークよりも優れていることを示す。
我々は、学習に基づく視覚モデルから学習前の学習を統合することにより、H-SAURのテスト時間効率をさらに向上する。
論文 参考訳(メタデータ) (2022-10-22T18:39:33Z) - XAI-N: Sensor-based Robot Navigation using Expert Policies and Decision
Trees [55.9643422180256]
本稿では,ロボットの密集した動的環境における衝突のない軌道を計算するためのセンサベース学習ナビゲーションアルゴリズムを提案する。
我々のアプローチは、sim2realパラダイムを用いて訓練された深層強化学習に基づくエキスパートポリシーを使用する。
シミュレーション環境でのアルゴリズムの利点を強調し、移動中の歩行者の間でClearpath Jackalロボットをナビゲートする。
論文 参考訳(メタデータ) (2021-04-22T01:33:10Z) - Closing the Closed-Loop Distribution Shift in Safe Imitation Learning [80.05727171757454]
模倣学習問題において,安全な最適化に基づく制御戦略を専門家として扱う。
我々は、実行時に安価に評価でき、専門家と同じ安全保証を確実に満足する学習されたポリシーを訓練する。
論文 参考訳(メタデータ) (2021-02-18T05:11:41Z) - Uncertainty-aware Contact-safe Model-based Reinforcement Learning [17.10030262602653]
本稿では, 接触安全行動を実現するロボットアプリケーションのための, 接触安全モデルベース強化学習(MBRL)を提案する。
確率的モデル予測制御(pMPC)制御限界とモデル不確かさを関連付け,学習の進捗に応じて制御行動の許容加速度を調整する。
論文 参考訳(メタデータ) (2020-10-16T05:11:25Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
従来のロボットのアプローチは、環境の正確なモデル、タスクの実行方法の詳細な説明、現在の状態を追跡するための堅牢な認識システムに依存している。
強化学習アプローチは、タスクを記述するための報酬信号だけで、生の感覚入力から直接操作することができるが、非常にサンプル非効率で脆弱である。
本研究では,ロボットの知覚・運動パイプラインにおける不正確さを克服できる一般的な手法を得るために,モデルに基づく手法の強みと学習に基づく手法の柔軟性を組み合わせる。
論文 参考訳(メタデータ) (2020-05-21T19:47:05Z) - Confounding-Robust Policy Evaluation in Infinite-Horizon Reinforcement
Learning [70.01650994156797]
教育医療などのバッチ強化学習において、観察データからのシーケンシャルな意思決定方針のオフ・アセスメントが必要である。
我々は、ある政策の境界を推定するアプローチを開発する。
より凝縮したデータを集めることで、シャープな境界への収束を証明します。
論文 参考訳(メタデータ) (2020-02-11T16:18:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。