Forward and Inverse Simulation of Pseudo-Two-Dimensional Model of Lithium-Ion Batteries Using Neural Networks
- URL: http://arxiv.org/abs/2412.13200v2
- Date: Wed, 19 Feb 2025 03:25:32 GMT
- Title: Forward and Inverse Simulation of Pseudo-Two-Dimensional Model of Lithium-Ion Batteries Using Neural Networks
- Authors: Myeong-Su Lee, Jaemin Oh, Dong-Chan Lee, KangWook Lee, Sooncheol Park, Youngjoon Hong,
- Abstract summary: We address the challenges posed by the high nonlinearity of the Butler-Volmer (BV) equation in forward and inverse simulations of the pseudo-two-dimensional (P2D) model.
The proposed methods prove effective for solving both forward and inverse problems involving the BV equation.
- Score: 7.0521374280670805
- License:
- Abstract: In this work, we address the challenges posed by the high nonlinearity of the Butler-Volmer (BV) equation in forward and inverse simulations of the pseudo-two-dimensional (P2D) model using the physics-informed neural network (PINN) framework. The BV equation presents significant challenges for PINNs, primarily due to the hyperbolic sine term, which renders the Hessian of the PINN loss function highly ill-conditioned. To address this issue, we introduce a bypassing term that improves numerical stability by substantially reducing the condition number of the Hessian matrix. Furthermore, the small magnitude of the ionic flux \( j \) often leads to a common failure mode where PINNs converge to incorrect solutions. We demonstrate that incorporating a secondary conservation law for the solid-phase potential \( \psi \) effectively prevents such convergence issues and ensures solution accuracy. The proposed methods prove effective for solving both forward and inverse problems involving the BV equation. Specifically, we achieve precise parameter estimation in inverse scenarios and reliable solution predictions for forward simulations.
Related papers
- Discovery of Quasi-Integrable Equations from traveling-wave data using the Physics-Informed Neural Networks [0.0]
PINNs are used to study vortex solutions in 2+1 dimensional nonlinear partial differential equations.
We consider PINNs with conservation laws (referred to as cPINNs), deformations of the initial profiles, and a friction approach to improve the identification's resolution.
arXiv Detail & Related papers (2024-10-23T08:29:13Z) - FEM-based Neural Networks for Solving Incompressible Fluid Flows and Related Inverse Problems [41.94295877935867]
numerical simulation and optimization of technical systems described by partial differential equations is expensive.
A comparatively new approach in this context is to combine the good approximation properties of neural networks with the classical finite element method.
In this paper, we extend this approach to saddle-point and non-linear fluid dynamics problems, respectively.
arXiv Detail & Related papers (2024-09-06T07:17:01Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - Efficient Bayesian inference using physics-informed invertible neural
networks for inverse problems [6.97393424359704]
We introduce an innovative approach for addressing Bayesian inverse problems through the utilization of physics-informed invertible neural networks (PI-INN)
The PI-INN offers a precise and efficient generative model for Bayesian inverse problems, yielding tractable posterior density estimates.
As a particular physics-informed deep learning model, the primary training challenge for PI-INN centers on enforcing the independence constraint.
arXiv Detail & Related papers (2023-04-25T03:17:54Z) - Maximum-likelihood Estimators in Physics-Informed Neural Networks for
High-dimensional Inverse Problems [0.0]
Physics-informed neural networks (PINNs) have proven a suitable mathematical scaffold for solving inverse ordinary (ODE) and partial differential equations (PDE)
In this work, we demonstrate that inverse PINNs can be framed in terms of maximum-likelihood estimators (MLE) to allow explicit error propagation from to the physical model space through Taylor expansion.
arXiv Detail & Related papers (2023-04-12T17:15:07Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Physics-Informed Neural Network Method for Parabolic Differential
Equations with Sharply Perturbed Initial Conditions [68.8204255655161]
We develop a physics-informed neural network (PINN) model for parabolic problems with a sharply perturbed initial condition.
Localized large gradients in the ADE solution make the (common in PINN) Latin hypercube sampling of the equation's residual highly inefficient.
We propose criteria for weights in the loss function that produce a more accurate PINN solution than those obtained with the weights selected via other methods.
arXiv Detail & Related papers (2022-08-18T05:00:24Z) - Wave simulation in non-smooth media by PINN with quadratic neural
network and PML condition [2.7651063843287718]
The recently proposed physics-informed neural network (PINN) has achieved successful applications in solving a wide range of partial differential equations (PDEs)
In this paper, we solve the acoustic and visco-acoustic scattered-field wave equation in the frequency domain with PINN instead of the wave equation to remove source perturbation.
We show that PML and quadratic neurons improve the results as well as attenuation and discuss the reason for this improvement.
arXiv Detail & Related papers (2022-08-16T13:29:01Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.