論文の概要: Faster and Stronger: When ANN-SNN Conversion Meets Parallel Spiking Calculation
- arxiv url: http://arxiv.org/abs/2412.13610v1
- Date: Wed, 18 Dec 2024 08:37:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:50:05.727467
- Title: Faster and Stronger: When ANN-SNN Conversion Meets Parallel Spiking Calculation
- Title(参考訳): ANN-SNN変換が並列スパイク計算に遭遇すると、より速く、より強くなる
- Authors: Zecheng Hao, Zhaofei Yu, Tiejun Huang,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、脳にインスパイアされたエネルギー効率の高いネットワークであり、適切な学習フレームワークを探索する上で重要な課題に直面している。
並列スパイクニューロンの各時間ステップ間の数学的マッピング関係を確立する並列変換学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 45.67180051148674
- License:
- Abstract: Spiking Neural Network (SNN), as a brain-inspired and energy-efficient network, is currently facing the pivotal challenge of exploring a suitable and efficient learning framework. The predominant training methodologies, namely Spatial-Temporal Back-propagation (STBP) and ANN-SNN Conversion, are encumbered by substantial training overhead or pronounced inference latency, which impedes the advancement of SNNs in scaling to larger networks and navigating intricate application domains. In this work, we propose a novel parallel conversion learning framework, which establishes a mathematical mapping relationship between each time-step of the parallel spiking neurons and the cumulative spike firing rate. We theoretically validate the lossless and sorting properties of the conversion process, as well as pointing out the optimal shifting distance for each step. Furthermore, by integrating the above framework with the distribution-aware error calibration technique, we can achieve efficient conversion towards more general activation functions or training-free circumstance. Extensive experiments have confirmed the significant performance advantages of our method for various conversion cases under ultra-low time latency. To our best knowledge, this is the first work which jointly utilizes parallel spiking calculation and ANN-SNN Conversion, providing a highly promising approach for SNN supervised training.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、脳にインスパイアされたエネルギー効率の高いネットワークであり、現在、適切な効率的な学習フレームワークを探索する上で重要な課題に直面している。
時空間バックプロパゲーション(STBP)とANN-SNNコンバージョンは、大規模なネットワークへのスケーリングや複雑なアプリケーションドメインのナビゲートにおいてSNNの進歩を阻害する、相当なトレーニングオーバーヘッドや顕著な推論遅延に悩まされている。
本研究では, 並列スパイキングニューロンの各時間ステップと累積スパイク発火速度との数学的マッピング関係を確立する並列変換学習フレームワークを提案する。
理論的に変換過程のロスレスおよびソート特性を検証し,各ステップの最適シフト距離を指摘する。
さらに、上記フレームワークを分散対応誤差校正技術に統合することにより、より一般的なアクティベーション関数やトレーニング不要な状況への効率的な変換を実現することができる。
超低レイテンシ下での各種変換事例に対して,本手法の大幅な性能向上が確認された。
我々の知る限り、これは並列スパイク計算とANN-SNN変換を併用した最初の作品であり、SNN教師付きトレーニングに非常に有望なアプローチを提供する。
関連論文リスト
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Training-free Conversion of Pretrained ANNs to SNNs for Low-Power and High-Performance Applications [23.502136316777058]
人工ニューラルネットワーク(ANN)の代替としてスパイキングニューラルネットワーク(SNN)が登場した
SNNの既存の教師付き学習アルゴリズムは、ANNのアルゴリズムよりもはるかに多くのメモリと時間を必要とする。
提案手法は,事前学習したANNモデルを,追加訓練を伴わずに,高性能なSNNに変換する。
論文 参考訳(メタデータ) (2024-09-05T09:14:44Z) - FTBC: Forward Temporal Bias Correction for Optimizing ANN-SNN Conversion [16.9748086865693]
Spiking Neural Networks(SNN)は、ニューラルネットワーク(ANN)と比較して、エネルギー効率の高いコンピューティングのための有望な道を提供する
本稿では,計算オーバーヘッドを伴わずに変換精度を向上させることを目的とした,FTBC(Forward Temporal Bias)技術を紹介する。
さらに,前方通過のみの時間偏差を求めるアルゴリズムを提案し,逆伝播の計算負担を軽減した。
論文 参考訳(メタデータ) (2024-03-27T09:25:20Z) - When Bio-Inspired Computing meets Deep Learning: Low-Latency, Accurate,
& Energy-Efficient Spiking Neural Networks from Artificial Neural Networks [22.721987637571306]
Spiking Neural Networks (SNN) は畳み込みニューラルネットワーク (CNN) に匹敵する精度を示している
ANN-to-SNN変換は、最近、複雑な画像認識タスクにおける最先端(SOTA)テスト精度に近いディープSNNの開発において、大きな注目を集めている。
提案手法は,SOTA変換手法で必要となる時間ステップを指数的に減少させる新しいANN-to-SNN変換フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-12T00:10:45Z) - Artificial to Spiking Neural Networks Conversion for Scientific Machine
Learning [24.799635365988905]
物理インフォームドニューラルネットワーク(PINN)をスパイキングニューラルネットワーク(SNN)に変換する手法を提案する。
SNNは従来のニューラルネットワーク(ANN)と比較してエネルギー効率が高いと期待されている
論文 参考訳(メタデータ) (2023-08-31T00:21:27Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
本稿では,SNN(Spike Neural Networks)とU-Netアーキテクチャを組み合わせた,画像処理のためのスパイキング-UNetの概念を紹介する。
効率的なスパイキング-UNetを実現するためには,スパイクによる高忠実度情報伝播の確保と,効果的なトレーニング戦略の策定という2つの課題に直面する。
実験の結果,画像のセグメンテーションとデノイングにおいて,スパイキングUNetは非スパイキングと同等の性能を発揮することがわかった。
論文 参考訳(メタデータ) (2023-07-20T16:00:19Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。