論文の概要: AI-Powered Algorithm-Centric Quantum Processor Topology Design
- arxiv url: http://arxiv.org/abs/2412.13805v1
- Date: Wed, 18 Dec 2024 12:53:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:49:00.017583
- Title: AI-Powered Algorithm-Centric Quantum Processor Topology Design
- Title(参考訳): AIによるアルゴリズム中心量子プロセッサトポロジー設計
- Authors: Tian Li, Xiao-Yue Xu, Chen Ding, Tian-Ci Tian, Wei-You Liao, Shuo Zhang, He-Liang Huang,
- Abstract要約: 本稿では,個々の量子回路のユニークな仕様に動的に適合する量子ビットトポロジーを提案する。
本手法は,回路を固定プロセッサトポロジにマッピングする従来の手法とは大きく異なる。
- 参考スコア(独自算出の注目度): 10.53761034955718
- License:
- Abstract: Quantum computing promises to revolutionize various fields, yet the execution of quantum programs necessitates an effective compilation process. This involves strategically mapping quantum circuits onto the physical qubits of a quantum processor. The qubits' arrangement, or topology, is pivotal to the circuit's performance, a factor that often defies traditional heuristic or manual optimization methods due to its complexity. In this study, we introduce a novel approach leveraging reinforcement learning to dynamically tailor qubit topologies to the unique specifications of individual quantum circuits, guiding algorithm-driven quantum processor topology design for reducing the depth of mapped circuit, which is particularly critical for the output accuracy on noisy quantum processors. Our method marks a significant departure from previous methods that have been constrained to mapping circuits onto a fixed processor topology. Experiments demonstrate that we have achieved notable enhancements in circuit performance, with a minimum of 20\% reduction in circuit depth in 60\% of the cases examined, and a maximum enhancement of up to 46\%. Furthermore, the pronounced benefits of our approach in reducing circuit depth become increasingly evident as the scale of the quantum circuits increases, exhibiting the scalability of our method in terms of problem size. This work advances the co-design of quantum processor architecture and algorithm mapping, offering a promising avenue for future research and development in the field.
- Abstract(参考訳): 量子コンピューティングは様々な分野に革命をもたらすが、量子プログラムの実行は効率的なコンパイルプロセスを必要とする。
これは量子回路を量子プロセッサの物理量子ビットに戦略的にマッピングすることを含む。
キュービットの配置(トポロジー)は、回路の性能に重要な要素であり、しばしばその複雑さのために従来のヒューリスティックあるいは手動の最適化手法に反する要素である。
本研究では,量子回路の固有仕様に動的に適合する量子ビットトポロジを動的に調整するために強化学習を活用する新しい手法を提案する。
本手法は,回路を固定プロセッサトポロジにマッピングする従来の手法とは大きく異なる。
実験の結果, 回路性能が向上し, 回路深度が最低でも20 %低下し, 最大で46 %まで向上したことがわかった。
さらに、量子回路の規模が大きくなるにつれて、回路深さの減少に対する我々のアプローチの顕著な利点が明らかになり、問題の大きさの観点から、我々の手法のスケーラビリティが示される。
この研究は量子プロセッサアーキテクチャとアルゴリズムマッピングの共同設計を推進し、この分野における将来の研究と開発への道のりを提供する。
関連論文リスト
- Redesign Quantum Circuits on Quantum Hardware Device [6.627541720714792]
量子ハードウェア上での大規模量子回路の再設計を可能にする新しいアーキテクチャを提案する。
具体的には、このアーキテクチャを(非)パラメータ化回路の等価性チェックを含む、回路最適化における3つの重要な応用に適用する。
提案手法の有効性は,従来のコンピュータと現在のNISQハードウェアの両方で実装された,これらのアプリケーションの優れた成果によって実証される。
論文 参考訳(メタデータ) (2024-12-30T12:05:09Z) - Circuit Folding: Modular and Qubit-Level Workload Management in Quantum-Classical Systems [5.6744988702710835]
回路編み込み(Circuit knitting)は、量子回路から計算負荷の一部をオフロードする技法である。
本稿では,量子回路内の繰り返し構造を識別・活用する新しいグラフベースシステムであるCiFoldを提案する。
我々のシステムは様々な量子アルゴリズムで広く評価されており、最大で799.2%の量子リソース使用量の削減を実現している。
論文 参考訳(メタデータ) (2024-12-24T23:34:17Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Distributed quantum architecture search [0.0]
ニューラルネットワークにインスパイアされた変分量子アルゴリズムは、量子コンピューティングにおいて新しいアプローチとなっている。
量子アーキテクチャ探索は、ゲートパラメータとともに回路構造を調整することでこの問題に対処し、高性能回路構造を自動的に発見する。
そこで我々は,特定の量子ビット接続を伴う相互接続型量子処理ユニットのための分散量子回路構造を自動設計することを目的とした,エンドツーエンドの分散量子アーキテクチャ探索フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-10T13:28:56Z) - Symmetry-Based Quantum Circuit Mapping [2.51705778594846]
本稿では,量子プロセッサの固有対称性を利用する量子回路再マッピングアルゴリズムを提案する。
このアルゴリズムは、対称性を用いて探索空間を制約し、全ての位相的に等価な回路マッピングを同定し、ベクトル計算を用いて各マッピングのスコアリングを高速化する。
論文 参考訳(メタデータ) (2023-10-27T10:04:34Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
本稿では,回路に最も影響を及ぼす量子回路の断面をピンポイントする手法を提案する。
我々は,IBM量子マシン上に実装されたアルゴリズム回路の例に応用して,提案手法の実用性と有効性を示す。
論文 参考訳(メタデータ) (2022-04-12T19:39:31Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。