論文の概要: Do Language Models Understand Time?
- arxiv url: http://arxiv.org/abs/2412.13845v3
- Date: Mon, 24 Feb 2025 03:37:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:50:44.309575
- Title: Do Language Models Understand Time?
- Title(参考訳): 言語モデルは時間を理解するか?
- Authors: Xi Ding, Lei Wang,
- Abstract要約: 大規模言語モデル(LLM)は、アクション認識、異常検出、要約を含む、ビデオベースのコンピュータビジョンアプリケーションに革命をもたらした。
本研究は,ビデオ処理におけるLLMの役割を,時間的推論能力に着目して批判的に考察する。
LLMの時間的理解を制限するため、バイアス、時間的アノテーションの欠如、ドメイン固有の制限など、既存のビデオデータセットによる課題を分析します。
- 参考スコア(独自算出の注目度): 2.290956583394892
- License:
- Abstract: Large language models (LLMs) have revolutionized video-based computer vision applications, including action recognition, anomaly detection, and video summarization. Videos inherently pose unique challenges, combining spatial complexity with temporal dynamics that are absent in static images or textual data. Current approaches to video understanding with LLMs often rely on pretrained video encoders to extract spatiotemporal features and text encoders to capture semantic meaning. These representations are integrated within LLM frameworks, enabling multimodal reasoning across diverse video tasks. However, the critical question persists: Can LLMs truly understand the concept of time, and how effectively can they reason about temporal relationships in videos? This work critically examines the role of LLMs in video processing, with a specific focus on their temporal reasoning capabilities. We identify key limitations in the interaction between LLMs and pretrained encoders, revealing gaps in their ability to model long-term dependencies and abstract temporal concepts such as causality and event progression. Furthermore, we analyze challenges posed by existing video datasets, including biases, lack of temporal annotations, and domain-specific limitations that constrain the temporal understanding of LLMs. To address these gaps, we explore promising future directions, including the co-evolution of LLMs and encoders, the development of enriched datasets with explicit temporal labels, and innovative architectures for integrating spatial, temporal, and semantic reasoning. By addressing these challenges, we aim to advance the temporal comprehension of LLMs, unlocking their full potential in video analysis and beyond. Our paper's GitHub repository can be found at https://github.com/Darcyddx/Video-LLM.
- Abstract(参考訳): 大規模言語モデル(LLM)は、アクション認識、異常検出、ビデオ要約を含む、ビデオベースのコンピュータビジョンアプリケーションに革命をもたらした。
ビデオには固有の課題があり、静的画像やテキストデータに存在しない時間的ダイナミックスと空間的複雑さが組み合わさっている。
LLMによるビデオ理解への現在のアプローチは、時空間の特徴を抽出する事前訓練されたビデオエンコーダと意味的意味をキャプチャするテキストエンコーダに依存していることが多い。
これらの表現はLLMフレームワークに統合され、多様なビデオタスクのマルチモーダル推論を可能にする。
LLMは、時間の概念を本当に理解することができ、ビデオにおける時間的関係を効果的に説明できますか?
本研究は,ビデオ処理におけるLLMの役割を,時間的推論能力に着目して批判的に考察する。
我々は,LLMと事前学習エンコーダの相互作用における鍵となる制約を明らかにし,長期依存や因果関係や事象の進行といった抽象的時間的概念をモデル化する能力のギャップを明らかにする。
さらに、バイアス、時間的アノテーションの欠如、LLMの時間的理解を制限するドメイン固有の制限など、既存のビデオデータセットによる課題を分析する。
これらのギャップに対処するために、LLMとエンコーダの共進化、明示的な時間ラベル付きリッチデータセットの開発、空間的、時間的、意味論的推論を統合する革新的なアーキテクチャなど、将来的な方向性を探究する。
これらの課題に対処することで、LLMの時間的理解を推進し、ビデオ分析などにおけるその潜在能力を最大限に活用することを目指している。
論文のGitHubリポジトリはhttps://github.com/Darcyddx/Video-LLM.comにある。
関連論文リスト
- Position: Empowering Time Series Reasoning with Multimodal LLMs [49.73647759532127]
マルチモーダル言語モデル (MLLM) は時系列解析においてより強力で柔軟な推論を可能にすると論じる。
我々は、MLLMにおける信頼、解釈可能性、堅牢な推論を優先する戦略を開発することで、この可能性を活用するよう研究者や実践者に呼びかける。
論文 参考訳(メタデータ) (2025-02-03T16:10:48Z) - Perceive, Query & Reason: Enhancing Video QA with Question-Guided Temporal Queries [50.47265863322891]
Video Question Answering (ビデオQA)は、ビデオ全体を理解するためにモデルを必要とする、難しいビデオ理解タスクである。
近年のMLLM(Multimodal Large Language Models)の進歩は,ビデオQAに特有なコモンセンス推論機能を活用して変化している。
本稿では,フレーム単位の視覚知覚とLCMの推論能力の間に疑問を導いた時間的ブリッジを生成する,新しい時間的モデリング手法であるT-Formerを提案する。
論文 参考訳(メタデータ) (2024-12-26T17:53:14Z) - VideoINSTA: Zero-shot Long Video Understanding via Informative Spatial-Temporal Reasoning with LLMs [27.473258727617477]
長いビデオ理解は、拡張タイムパンに対する推論の複雑さのために、ユニークな課題を提示する。
Informative Space-TemporAl Reasoning for long-form Video Understandingを提案する。
提案モデルは,3つの長大ビデオ質問応答ベンチマークの最先端性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-09-30T15:04:14Z) - ST-LLM: Large Language Models Are Effective Temporal Learners [58.79456373423189]
大規模言語モデル(LLM)は、テキストの理解と生成において印象的な能力を示した。
ビデオベースの対話システムでビデオを効果的にエンコードし、理解する方法は、まだ解決されていない。
LLM内部の時空間シーケンスをモデル化したビデオLLMベースラインST-LLMを提案する。
論文 参考訳(メタデータ) (2024-03-30T10:11:26Z) - LITA: Language Instructed Temporal-Localization Assistant [71.68815100776278]
ビデオ長に対してタイムスタンプをエンコードするタイムトークンを導入し,ビデオ中のタイムスタンプをよりよく表現する。
また、アーキテクチャにSlowFastトークンを導入し、微細な時間分解能で時間情報をキャプチャする。
時間的ローカライゼーションに重点を置くことで,既存のビデオLLMに比べて映像ベースのテキスト生成が大幅に向上することを示す。
論文 参考訳(メタデータ) (2024-03-27T22:50:48Z) - TempCompass: Do Video LLMs Really Understand Videos? [36.28973015469766]
既存のベンチマークでは、ビデオLLMの時間知覚能力に関する包括的なフィードバックが得られていない。
質の高い時間的側面とタスク形式を多様に導入した textbfTemp ベンチマークを提案する。
論文 参考訳(メタデータ) (2024-03-01T12:02:19Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
ダイナミックスビデオのモデリングのため、ビデオ事前トレーニングは難しい。
本稿では,ビデオ事前学習におけるこのような制限を,効率的なビデオ分解によって解決する。
筆者らのフレームワークは,13のマルチモーダルベンチマークにおいて,画像と映像のコンテントの理解と生成が可能であることを実証した。
論文 参考訳(メタデータ) (2024-02-05T16:30:49Z) - Temporal Blind Spots in Large Language Models [20.631107338678234]
大規模言語モデル(LLM)は、様々な自然言語処理タスクを実行する非並列性のため、最近注目されている。
本研究では,時間的理解を必要とするタスクに対して,汎用LLMの基本的な限界について検討する。
論文 参考訳(メタデータ) (2024-01-22T16:20:14Z) - Video Understanding with Large Language Models: A Survey [97.29126722004949]
言語・マルチモーダルタスクにおける大規模言語モデル(LLM)の顕著な機能を考えると,近年の映像理解の進歩について概観する。
Vid-LLMの創発的能力は驚くほど進歩しており、特にオープンな多粒性推論能力がある。
本調査は,Vid-LLMのタスク,データセット,ベンチマーク,評価方法論に関する総合的研究である。
論文 参考訳(メタデータ) (2023-12-29T01:56:17Z) - VTimeLLM: Empower LLM to Grasp Video Moments [43.51980030572101]
大規模言語モデル(LLM)は、顕著なテキスト理解能力を示している。
ビデオLLMはビデオ全体の粗い記述しか提供できない。
微細な映像モーメント理解のためのビデオLLMであるVTimeLLMを提案する。
論文 参考訳(メタデータ) (2023-11-30T10:49:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。