論文の概要: Crabs: Consuming Resrouce via Auto-generation for LLM-DoS Attack under Black-box Settings
- arxiv url: http://arxiv.org/abs/2412.13879v1
- Date: Wed, 18 Dec 2024 14:19:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:49:40.259322
- Title: Crabs: Consuming Resrouce via Auto-generation for LLM-DoS Attack under Black-box Settings
- Title(参考訳): クローブ:ブラックボックス設定下のLSM-DoSアタックのためのオートジェネレーションによる再起動
- Authors: Yuanhe Zhang, Zhenhong Zhou, Wei Zhang, Xinyue Wang, Xiaojun Jia, Yang Liu, Sen Su,
- Abstract要約: LLM-DoS攻撃のための自動生成(Auto-Generation for LLM-DoS Attack)と呼ばれるブラックボックスLLM向けに設計された自動アルゴリズムを提案する。
提案手法は,プロンプトノードのセマンティック改善により,既存の防御を回避し,ステルスネスを向上することができる。
実験の結果、AutoDoSはサービスレスポンスのレイテンシを250ドル以上アップローで増幅し、リソース消費が激化することが示された。
- 参考スコア(独自算出の注目度): 18.589945121820243
- License:
- Abstract: Large Language Models (LLMs) have demonstrated remarkable performance across diverse tasks. LLMs continue to be vulnerable to external threats, particularly Denial-of-Service (DoS) attacks. Specifically, LLM-DoS attacks aim to exhaust computational resources and block services. However, prior works tend to focus on performing white-box attacks, overlooking black-box settings. In this work, we propose an automated algorithm designed for black-box LLMs, called Auto-Generation for LLM-DoS Attack (AutoDoS). AutoDoS introduces DoS Attack Tree and optimizes the prompt node coverage to enhance effectiveness under black-box conditions. Our method can bypass existing defense with enhanced stealthiness via semantic improvement of prompt nodes. Furthermore, we reveal that implanting Length Trojan in Basic DoS Prompt aids in achieving higher attack efficacy. Experimental results show that AutoDoS amplifies service response latency by over 250 $\times \uparrow$, leading to severe resource consumption in terms of GPU utilization and memory usage. Our code is available at \url{https://github.com/shuita2333/AutoDoS}.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々なタスクにまたがる顕著なパフォーマンスを示している。
LLMは、外部の脅威、特にDoS(Denial-of-Service)攻撃に対して脆弱である。
具体的には、LLM-DoS攻撃は計算資源を消費し、サービスをブロックすることを目的としている。
しかしながら、以前の作業では、ブラックボックスの設定を見渡すことで、ホワイトボックスアタックの実行に集中する傾向があった。
そこで本研究では,LDM-DoS攻撃のための自動生成(Auto-Generation for LLM-DoS Attack, AutoDoS)と呼ばれるブラックボックスLLM向けに設計された自動アルゴリズムを提案する。
AutoDoSはDoS攻撃木を導入し、ブラックボックス条件下での有効性を高めるためにプロンプトノードカバレッジを最適化する。
提案手法は,プロンプトノードのセマンティック改善により,既存の防御を回避し,ステルスネスを向上することができる。
さらに,Basic DoS Promptにレングス・トロイジャンを移植することで,高い攻撃効果が期待できることを明らかにした。
実験の結果,AutoDoSはサービス応答遅延を250$\times \uparrow$で増幅し,GPU使用率とメモリ使用率の面で厳しいリソース消費につながることが示された。
私たちのコードは \url{https://github.com/shuita2333/AutoDoS} で利用可能です。
関連論文リスト
- Commercial LLM Agents Are Already Vulnerable to Simple Yet Dangerous Attacks [88.84977282952602]
最近のMLセキュリティ文献は、整列型大規模言語モデル(LLM)に対する攻撃に焦点を当てている。
本稿では,LLMエージェントに特有のセキュリティとプライバシの脆弱性を分析する。
我々は、人気のあるオープンソースおよび商用エージェントに対する一連の実証的な攻撃を行い、その脆弱性の即時的な影響を実証した。
論文 参考訳(メタデータ) (2025-02-12T17:19:36Z) - The Best Defense is a Good Offense: Countering LLM-Powered Cyberattacks [2.6528263069045126]
大規模言語モデル(LLM)は、間もなく自律的なサイバーエージェントにとって不可欠なものになるだろう。
我々は,LLM攻撃の脆弱性を生かした新たな防衛戦略を導入する。
以上の結果から, LLM脆弱性を防御戦略に変換する効果を実証し, 防衛成功率を最大90%とした。
論文 参考訳(メタデータ) (2024-10-20T14:07:24Z) - Defending Large Language Models Against Jailbreak Attacks via Layer-specific Editing [14.094372002702476]
大規模言語モデル(LLM)は、広範囲の現実世界のアプリケーションで採用されつつある。
近年の研究では、LSMは故意に構築された敵のプロンプトに弱いことが示されている。
そこで本研究では,新しい防衛手法である textbfLayer-specific textbfEditing (LED) を提案する。
論文 参考訳(メタデータ) (2024-05-28T13:26:12Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
textbfAdaptive textbfShield Promptingを提案する。これは、MLLMを構造ベースのジェイルブレイク攻撃から守るための防御プロンプトで入力をプリペイドする。
我々の手法は、構造に基づくジェイルブレイク攻撃に対するMLLMの堅牢性を一貫して改善することができる。
論文 参考訳(メタデータ) (2024-03-14T15:57:13Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
我々は,このような脆弱性のリスクを評価するために,BIPIAと呼ばれる間接的インジェクション攻撃のための最初のベンチマークを導入した。
我々の分析では、LLMが情報コンテキストと動作可能な命令を区別できないことと、外部コンテンツ内での命令の実行を回避できないことの2つの主要な要因を同定した。
ブラックボックスとホワイトボックスという2つの新しい防御機構と、これらの脆弱性に対処するための明確なリマインダーを提案する。
論文 参考訳(メタデータ) (2023-12-21T01:08:39Z) - The Philosopher's Stone: Trojaning Plugins of Large Language Models [22.67696768099352]
オープンソースのLarge Language Models (LLM) は、プロプライエタリなLLMに匹敵するパフォーマンスのため、最近人気を集めている。
ドメイン特化タスクを効率的にこなすために、低ランクアダプタを用いて高価なアクセラレーターを使わずにオープンソースのLLMを洗練することができる。
LLMを制御するために低ランクアダプタを利用できるかどうかはまだ分かっていない。
論文 参考訳(メタデータ) (2023-12-01T06:36:17Z) - Attack Prompt Generation for Red Teaming and Defending Large Language
Models [70.157691818224]
大規模言語モデル (LLM) は、有害なコンテンツを生成するためにLSMを誘導するレッド・チーム・アタックの影響を受けやすい。
本稿では、手動と自動の手法を組み合わせて、高品質な攻撃プロンプトを経済的に生成する統合的アプローチを提案する。
論文 参考訳(メタデータ) (2023-10-19T06:15:05Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
SmoothLLMは,大規模言語モデル(LLM)に対するジェイルブレーキング攻撃を軽減するために設計された,最初のアルゴリズムである。
敵が生成したプロンプトが文字レベルの変化に対して脆弱であることから、我々の防衛はまず、与えられた入力プロンプトの複数のコピーをランダムに摂動し、対応する予測を集約し、敵の入力を検出する。
論文 参考訳(メタデータ) (2023-10-05T17:01:53Z) - Goal-Oriented Prompt Attack and Safety Evaluation for LLMs [43.93613764464993]
高品質なプロンプト攻撃サンプルを構築するパイプラインと、CPADと呼ばれる中国のプロンプト攻撃データセットを導入する。
我々のプロンプトは、慎重に設計されたいくつかのプロンプトアタックテンプレートで、予期せぬ出力を生成するためにLSMを誘導することを目的としている。
GPT-3.5に対する攻撃成功率は70%程度であった。
論文 参考訳(メタデータ) (2023-09-21T07:07:49Z) - Baseline Defenses for Adversarial Attacks Against Aligned Language
Models [109.75753454188705]
最近の研究は、テキストのモデレーションが防御をバイパスするジェイルブレイクのプロンプトを生み出すことを示している。
検出(複雑度に基づく)、入力前処理(言い換えと再帰化)、対人訓練の3種類の防衛について検討する。
テキストに対する既存の離散化の弱点と比較的高いコストの最適化が組み合わさって、標準適応攻撃をより困難にしていることがわかった。
論文 参考訳(メタデータ) (2023-09-01T17:59:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。