Harvesting energy from turbulent winds with Reinforcement Learning
- URL: http://arxiv.org/abs/2412.13961v1
- Date: Wed, 18 Dec 2024 15:40:40 GMT
- Title: Harvesting energy from turbulent winds with Reinforcement Learning
- Authors: Lorenzo Basile, Maria Grazia Berni, Antonio Celani,
- Abstract summary: Airborne Wind Energy (AWE) is an emerging technology designed to harness the power of high-altitude winds.
AWE is based on flying devices that, tethered to a ground station and driven by the wind, convert its mechanical energy into electrical energy by means of a generator.
Our aim is to explore the possibility of replacing these techniques with an approach based on Reinforcement Learning (RL)
- Score: 0.0
- License:
- Abstract: Airborne Wind Energy (AWE) is an emerging technology designed to harness the power of high-altitude winds, offering a solution to several limitations of conventional wind turbines. AWE is based on flying devices (usually gliders or kites) that, tethered to a ground station and driven by the wind, convert its mechanical energy into electrical energy by means of a generator. Such systems are usually controlled by manoeuvering the kite so as to follow a predefined path prescribed by optimal control techniques, such as model-predictive control. These methods are strongly dependent on the specific model at use and difficult to generalize, especially in unpredictable conditions such as the turbulent atmospheric boundary layer. Our aim is to explore the possibility of replacing these techniques with an approach based on Reinforcement Learning (RL). Unlike traditional methods, RL does not require a predefined model, making it robust to variability and uncertainty. Our experimental results in complex simulated environments demonstrate that AWE agents trained with RL can effectively extract energy from turbulent flows, relying on minimal local information about the kite orientation and speed relative to the wind.
Related papers
- Deep Reinforcement Learning for Multi-Objective Optimization: Enhancing Wind Turbine Energy Generation while Mitigating Noise Emissions [0.4218593777811082]
We develop a torque-pitch control framework using deep reinforcement learning for wind turbines.
We employ a double deep Q-learning, coupled to a blade element momentum solver, to enable precise control over wind turbine parameters.
arXiv Detail & Related papers (2024-07-18T09:21:51Z) - Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal
Transformer [112.12271800369741]
Wind power is attracting increasing attention around the world due to its renewable, pollution-free, and other advantages.
Accurate wind power forecasting (WPF) can effectively reduce power fluctuations in power system operations.
Existing methods are mainly designed for short-term predictions and lack effective spatial-temporal feature augmentation.
arXiv Detail & Related papers (2023-05-30T04:03:15Z) - On Transforming Reinforcement Learning by Transformer: The Development
Trajectory [97.79247023389445]
Transformer, originally devised for natural language processing, has also attested significant success in computer vision.
We group existing developments in two categories: architecture enhancement and trajectory optimization.
We examine the main applications of TRL in robotic manipulation, text-based games, navigation and autonomous driving.
arXiv Detail & Related papers (2022-12-29T03:15:59Z) - XAI for transparent wind turbine power curve models [0.0]
We use Shapley values and XAI to uncover strategies machine learning models have learned from operational wind turbine data.
Our findings reveal that the trend towards ever larger model architectures, driven by a focus on test set performance, can result in physically implausible model strategies.
We propose a practical approach to utilize explanations for root cause analysis in the context of wind turbine performance monitoring.
arXiv Detail & Related papers (2022-10-21T16:59:06Z) - Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds [96.74836678572582]
We present a learning-based approach that allows rapid online adaptation by incorporating pretrained representations through deep learning.
Neural-Fly achieves precise flight control with substantially smaller tracking error than state-of-the-art nonlinear and adaptive controllers.
arXiv Detail & Related papers (2022-05-13T21:55:28Z) - Optimizing Airborne Wind Energy with Reinforcement Learning [0.0]
Reinforcement Learning is a technique that learns to associate observations with profitable actions without requiring prior knowledge of the system.
We show that in a simulated environment Reinforcement Learning finds an efficient way to control a kite so that it can tow a vehicle for long distances.
arXiv Detail & Related papers (2022-03-27T10:28:16Z) - Measuring Wind Turbine Health Using Drifting Concepts [55.87342698167776]
We propose two new approaches for the analysis of wind turbine health.
The first method aims at evaluating the decrease or increase in relatively high and low power production.
The second method evaluates the overall drift of the extracted concepts.
arXiv Detail & Related papers (2021-12-09T14:04:55Z) - Machine Learning for Mechanical Ventilation Control (Extended Abstract) [52.65490904484772]
Mechanical ventilation is one of the most widely used therapies in the ICU.
We frame these as a control problem: ventilators must let air in and out of the patient's lungs according to a prescribed trajectory of airway pressure.
Our data-driven approach learns to control an invasive ventilator by training on a simulator itself trained on data collected from the ventilator.
This method outperforms popular reinforcement learning algorithms and even controls the physical ventilator more accurately and robustly than PID.
arXiv Detail & Related papers (2021-11-19T20:54:41Z) - Scalable Optimization for Wind Farm Control using Coordination Graphs [5.56699571220921]
A wind farm controller is required to match the farm's power production with a power demand imposed by the grid operator.
This is a non-trivial optimization problem, as complex dependencies exist between the wind turbines.
We propose a new learning method for wind farm control that leverages the sparse wind farm structure to factorize the optimization problem.
arXiv Detail & Related papers (2021-01-19T20:12:30Z) - Hybrid Neuro-Evolutionary Method for Predicting Wind Turbine Power
Output [6.411829871947649]
We use historical data in the supervisory control and data acquisition (SCADA) systems as input to estimate the power output from an onshore wind farm in Sweden.
With the prior knowledge that the underlying wind patterns are highly non-linear and diverse, we combine a self-adaptive differential evolution (SaDE) algorithm.
We show that our approach outperforms its counterparts.
arXiv Detail & Related papers (2020-04-02T04:22:22Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
We propose a data-driven control algorithm based on neural networks to reduce this cost of model identification.
We validate our learning and control algorithms on a two-story building with ten independently controlled zones, located in Italy.
arXiv Detail & Related papers (2020-01-22T00:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.