Modulating Low-Power Threshold Optical Bistability by Electrically Reconfigurable Free-Electron Kerr Nonlinearity
- URL: http://arxiv.org/abs/2412.14082v1
- Date: Wed, 18 Dec 2024 17:29:27 GMT
- Title: Modulating Low-Power Threshold Optical Bistability by Electrically Reconfigurable Free-Electron Kerr Nonlinearity
- Authors: Huatian Hu, Gonzalo Álvarez-Pérez, Antonio Valletta, Marialilia Pea, Michele Ortolani, Cristian Ciracì,
- Abstract summary: We propose a microscopic mechanism to electrically reconfigure the Kerr nonlinearity by modulating the concentration of free electrons in heavily doped semiconductors under a static bias.<n>The power threshold of achieving optical bistability shows unprecedented tunability over two orders of magnitude, reaching values as low as 10 $mu$W through surface charge control.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a microscopic mechanism to electrically reconfigure the Kerr nonlinearity by modulating the concentration of free electrons in heavily doped semiconductors under a static bias. Our theory incorporates electrostatic and hydrodynamic frameworks to describe the electronic dynamics, demonstrating electrically tunable linear and nonlinear modulations. The power threshold of achieving optical bistability shows unprecedented tunability over two orders of magnitude, reaching values as low as 10 $\mu$W through surface charge control. These findings offer new insights into understanding and actively controlling Kerr nonlinearities, paving the way for efficient refractive index engineering as well as the development of advanced linear and nonlinear electro-optical modulators.
Related papers
- Ultrahigh free-electron Kerr nonlinearity in all-semiconductor waveguides for all-optical nonlinear modulation of mid-infrared light [0.0]
We show that longitudinal bulk plasmons can generate exceptionally strong Kerr nonlinearities in waveguides.
These waveguides achieve ultrahigh nonlinear coefficients exceeding 10$7$ W$-1$km$-1$ and support long-propagating modes with propagation over 100 $mu$m.
This work evidences the transformative potential of free-electron nonlinearities in heavily doped semiconductors for photonic integrated circuits.
arXiv Detail & Related papers (2025-03-06T18:57:25Z) - Weak Kerr Nonlinearity Boosts the Performance of Frequency-Multiplexed
Photonic Extreme Learning Machines: A Multifaceted Approach [49.1574468325115]
We investigate the Kerr nonlinearity impact on the performance of a frequency-multiplexed Extreme Learning Machine (ELM)
The Kerr nonlinearity facilitates the randomized neuron connections allowing for efficient information mixing.
We introduce a model to show that, in frequency-multiplexed ELMs, the Kerr nonlinearity mixes information via four-wave mixing, rather than via self- or cross-phase modulation.
arXiv Detail & Related papers (2023-12-19T16:18:59Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Using system-reservoir methods to derive effective field theories for
broadband nonlinear quantum optics: a case study on cascaded quadratic
nonlinearities [0.0]
nonlinear interactions among a large number of frequency components induce complex dynamics that may defy analysis.
We introduce a perturbative framework for factoring out reservoir degrees of freedom and establishing a concise effective model.
Our results highlight the utility of system-reservoir methods for deriving accurate, intuitive reduced models.
arXiv Detail & Related papers (2023-11-06T23:00:47Z) - Kerr-Enhanced Optical Spring [0.11422130626858949]
We propose and experimentally demonstrate the generation of enhanced optical springs using the optical Kerr effect.
To our knowledge, this is the first realization of optomechanical coupling enhancement using a nonlinear optical effect.
arXiv Detail & Related papers (2023-10-28T21:57:04Z) - Strong kinetic-inductance Kerr nonlinearity with titanium nitride
nanowires [1.0928470926399563]
We study a means of magnifying KI nonlinearity by confining the current density of resonant electromagnetic modes in nanowires.
With improved design, our devices are expected to approach the regime of strong quantum nonlinearity in the millimeter-wave spectrum.
arXiv Detail & Related papers (2022-07-30T22:09:16Z) - Tunable directional photon scattering from a pair of superconducting
qubits [105.54048699217668]
In the optical and microwave frequency ranges tunable directionality can be achieved by applying external magnetic fields.
We demonstrate tunable directional scattering with just two transmon qubits coupled to a transmission line.
arXiv Detail & Related papers (2022-05-06T15:21:44Z) - A background-free optically levitated charge sensor [50.591267188664666]
We introduce a new technique to model and eliminate dipole moment interactions limiting the performance of sensors employing levitated objects.
As a demonstration, this is applied to the search for unknown charges of a magnitude much below that of an electron.
As a by-product of the technique, the electromagnetic properties of the levitated objects can also be measured on an individual basis.
arXiv Detail & Related papers (2021-12-20T08:16:28Z) - In situ control of integrated Kerr nonlinearity [2.773426016230597]
Kerr nonlinearity in nanophotonic cavities provides a versatile platform to explore fundamental physical sciences.
We report the in situ control of integrated Kerr nonlinearity through its interplay with the cascaded Pockels nonlinear process.
arXiv Detail & Related papers (2021-11-30T21:48:20Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Enhanced generation of non-degenerate photon-pairs in nonlinear
metasurfaces [55.41644538483948]
Non-degenerate photon-pair generation can enable orders-of-surface enhancement of the photon rate and spectral brightness.
We show that the entanglement of the photon-pairs can be tuned by varying the pump polarization, which can underpin future advances and applications of ultra-compact quantum light sources.
arXiv Detail & Related papers (2021-04-15T08:20:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.