論文の概要: Generative AI Toolkit -- a framework for increasing the quality of LLM-based applications over their whole life cycle
- arxiv url: http://arxiv.org/abs/2412.14215v1
- Date: Wed, 18 Dec 2024 10:40:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 18:44:15.840177
- Title: Generative AI Toolkit -- a framework for increasing the quality of LLM-based applications over their whole life cycle
- Title(参考訳): Generative AI Toolkit - LLMベースのアプリケーションの品質をライフサイクル全体にわたって向上するためのフレームワーク
- Authors: Jens Kohl, Luisa Gloger, Rui Costa, Otto Kruse, Manuel P. Luitz, David Katz, Gonzalo Barbeito, Markus Schweier, Ryan French, Jonas Schroeder, Thomas Riedl, Raphael Perri, Youssef Mostafa,
- Abstract要約: 本稿では,LLMベースのアプリケーションのライフサイクル全体を自動化したGenerative AI Toolkitを紹介する。
このツールキットはエージェントのような生成AIアプリケーションの設定、テスト、監視、最適化に役立ち、リリースサイクルを短縮しながら品質を大幅に改善する。
ジェネレーティブAIツールキットが他のチームに役立つと確信しているので、オープンソースにして、他の人が利用し、前進し、適応し、改善することを望んでいます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As LLM-based applications reach millions of customers, ensuring their scalability and continuous quality improvement is critical for success. However, the current workflows for developing, maintaining, and operating (DevOps) these applications are predominantly manual, slow, and based on trial-and-error. With this paper we introduce the Generative AI Toolkit, which automates essential workflows over the whole life cycle of LLM-based applications. The toolkit helps to configure, test, continuously monitor and optimize Generative AI applications such as agents, thus significantly improving quality while shortening release cycles. We showcase the effectiveness of our toolkit on representative use cases, share best practices, and outline future enhancements. Since we are convinced that our Generative AI Toolkit is helpful for other teams, we are open sourcing it on and hope that others will use, forward, adapt and improve
- Abstract(参考訳): LLMベースのアプリケーションは数百万の顧客にリーチするので、そのスケーラビリティと継続的な品質改善が成功に不可欠です。
しかしながら、これらのアプリケーションを開発、保守、運用するための現在のワークフローは、主に手動で、遅く、試行錯誤に基づいています。
本稿では,LLMベースのアプリケーションのライフサイクル全体にわたって,基本的なワークフローを自動化するGenerative AI Toolkitを紹介する。
このツールキットは、エージェントのような生成AIアプリケーションの設定、テスト、継続的な監視、最適化に役立ち、リリースサイクルを短縮しながら、品質を大幅に改善する。
代表的なユースケースにおけるツールキットの有効性を示し、ベストプラクティスを共有し、今後の拡張の概要を説明します。
ジェネレーティブAIツールキットが他のチームに役立つと確信しているので、オープンソースにして、他の人が利用し、前進し、適応し、改善することを願っています。
関連論文リスト
- OTC: Optimal Tool Calls via Reinforcement Learning [87.28134636548705]
ツール統合報酬は,正しさとツール効率を共同で考慮し,高いツール生産性を向上する。
このアプローチでは,ツールコールを最大73.1%削減し,ツールの生産性を最大229.4%向上すると同時に,同等の回答精度を維持している。
論文 参考訳(メタデータ) (2025-04-21T05:40:05Z) - ToolRL: Reward is All Tool Learning Needs [54.16305891389931]
大規模言語モデル(LLM)は、ツールの使用能力を得るために、しばしば監督された微調整(SFT)を行う。
近年の強化学習(RL)の進歩は、有望な推論と一般化能力を示している。
本稿では、RLパラダイムにおけるツール選択とアプリケーションタスクに対する報酬設計に関する最初の総合的研究について述べる。
論文 参考訳(メタデータ) (2025-04-16T21:45:32Z) - ToolACE-R: Tool Learning with Adaptive Self-Refinement [84.69651852838794]
ツール学習により、大規模言語モデルは複雑なユーザタスクを解決するための外部ツールを活用することができる。
本稿では,ツール実行のための適応型自己調整手法であるToolACE-Rを提案する。
提案手法は,様々なサイズのベースモデルと互換性のある提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2025-04-02T06:38:56Z) - GenTool: Enhancing Tool Generalization in Language Models through Zero-to-One and Weak-to-Strong Simulation [37.85029997364506]
大規模言語モデル(LLM)は、外部ツールを統合することで、AIアシスタントとしての能力を向上することができる。
我々は,ツール利用における多種多様な一般化課題に備えた,新しい学習フレームワークGenToolを提案する。
提案手法は,ゼロ・ツー・ワン・ジェネリゼーションと弱・ストロング・ジェネリゼーションという,実世界の応用に不可欠な2つの基本次元に対処する。
論文 参考訳(メタデータ) (2025-02-26T09:54:33Z) - LLM Agents Making Agent Tools [2.5529148902034637]
ツールの使用は、大規模言語モデル(LLM)を、複雑なマルチステップタスクを実行できる強力なエージェントに変えた。
論文をコードで自律的にLLM互換のツールに変換する新しいエージェントフレームワークであるToolMakerを提案する。
タスク記述とリポジトリURLが短いので、ToolMakerは必要な依存関係を自律的にインストールし、タスクを実行するコードを生成する。
論文 参考訳(メタデータ) (2025-02-17T11:44:11Z) - Learning Evolving Tools for Large Language Models [44.25796648300785]
ツール変数に対する大規模言語モデル(LLM)の適応性と反射性を向上するツールEVOを提案する。
Monte Carlo Tree Searchを活用することで、ToolEVOは動的環境におけるLLMの積極的な探索と相互作用を促進する。
また、ツール変数の影響を評価するために特別に設計されたベンチマークであるToolQA-Dを紹介する。
論文 参考訳(メタデータ) (2024-10-09T07:14:45Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain(ATC)は、大規模言語モデル(LLM)がマルチツールユーザとして機能することを可能にするフレームワークである。
次に,ツールの範囲を拡大するために,ブラックボックス探索法を提案する。
包括的な評価のために、ToolFlowという挑戦的なベンチマークを構築しました。
論文 参考訳(メタデータ) (2024-05-26T11:40:58Z) - Towards Practical Tool Usage for Continually Learning LLMs [28.62382804829694]
大規模言語モデルは、言語ベースのタスクを解くために生まれつきのスキルを示す。
しかし、彼らの知識はパラメータの中に直接格納され、時間内には静的のままである。
ツールの使用は、LLMがインターフェイスを通してアクセス可能なシステムに作業をオフロードするのに役立つ。
しかし、それらを使用するLCMは、長期間使用するためには、まだ非定常環境に適応する必要がある。
論文 参考訳(メタデータ) (2024-04-14T19:45:47Z) - Learning to Use Tools via Cooperative and Interactive Agents [58.77710337157665]
ツール学習は、外部ツールを使用してユーティリティを拡張するエージェントとして、大きな言語モデル(LLM)を促進する。
ツール選択,ツール実行,アクションキャリブレーションの3つの特別なエージェントを個別にコーディネートする,協調型対話型エージェントフレームワークであるConAgentsを提案する。
3つのデータセットに対する実験により、LLMは、ConAgentsを装備した場合、大幅に改善されたベースラインよりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-03-05T15:08:16Z) - Large Language Models as Tool Makers [85.00361145117293]
我々はLLM A s Tool Makers (LATM) と呼ばれるクローズドループフレームワークを導入する。
ツール作成: 1 つのツール作成: LLM がタスクセットのためのツールを作成するツールメーカとして機能する 2 つのツール使用: 別の LLM がツールユーザとして機能し、ツールメーカが問題解決のために構築したツールを適用する。
論文 参考訳(メタデータ) (2023-05-26T17:50:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。