論文の概要: Treatment Effects Estimation on Networked Observational Data using Disentangled Variational Graph Autoencoder
- arxiv url: http://arxiv.org/abs/2412.14497v1
- Date: Thu, 19 Dec 2024 03:44:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:33:56.201085
- Title: Treatment Effects Estimation on Networked Observational Data using Disentangled Variational Graph Autoencoder
- Title(参考訳): 分散変分グラフオートエンコーダを用いたネットワーク観測データに対する処理効果の推定
- Authors: Di Fan, Renlei Jiang, Yunhao Wen, Chuanhou Gao,
- Abstract要約: 観察データから個別治療効果(ITE)を推定する手法が,各領域で注目されている。
本稿では,ネットワーク化された観測データに対する処理効果推定のための非絡み付き因子を学習する,新しい非絡み付き変分グラフオートエンコーダを提案する。
- 参考スコア(独自算出の注目度): 1.361700725822891
- License:
- Abstract: Estimating individual treatment effect (ITE) from observational data has gained increasing attention across various domains, with a key challenge being the identification of latent confounders affecting both treatment and outcome. Networked observational data offer new opportunities to address this issue by utilizing network information to infer latent confounders. However, most existing approaches assume observed variables and network information serve only as proxy variables for latent confounders, which often fails in practice, as some variables influence treatment but not outcomes, and vice versa. Recent advances in disentangled representation learning, which disentangle latent factors into instrumental, confounding, and adjustment factors, have shown promise for ITE estimation. Building on this, we propose a novel disentangled variational graph autoencoder that learns disentangled factors for treatment effect estimation on networked observational data. Our graph encoder further ensures factor independence using the Hilbert-Schmidt Independence Criterion. Extensive experiments on two semi-synthetic datasets derived from real-world social networks and one synthetic dataset demonstrate that our method achieves state-of-the-art performance.
- Abstract(参考訳): 観察データから個別治療効果(ITE)を推定することは、様々な領域で注目され、治療と結果の両方に影響を及ぼす潜在的共同創設者の特定が大きな課題となっている。
ネットワーク観測データは、ネットワーク情報を利用して潜伏した共同設立者を推論することで、この問題に対処する新たな機会を提供する。
しかし、既存のほとんどのアプローチでは、観測された変数とネットワーク情報は、潜伏した共同創設者のプロキシ変数としてのみ機能し、実際は失敗することが多い。
楽器, コンバウンディング, 調整因子に潜伏因子を分解する非絡み合い表現学習の最近の進歩は, ITE推定の可能性を示唆している。
そこで本研究では,ネットワーク化された観測データに対する処理効果推定のための非絡み付き因子を学習する,非絡み付き変分グラフオートエンコーダを提案する。
グラフエンコーダは、Hilbert-Schmidt Independence Criterionを使用して、因子独立をさらに保証します。
実世界のソーシャルネットワークから派生した2つの半合成データセットと1つの合成データセットの大規模な実験により,本手法が最先端の性能を達成することを示す。
関連論文リスト
- Network Causal Effect Estimation In Graphical Models Of Contagion And Latent Confounding [2.654975444537834]
多くのネットワーク研究の鍵となる疑問は、観測された単位間の相関は、主に感染や潜伏によるものであるかである。
ネットワーク因果効果の推定手法を提案する。
実世界のネットワークを用いて,合成データによる手法の有効性と仮定の有効性を評価する。
論文 参考訳(メタデータ) (2024-11-02T22:12:44Z) - Estimating Individual Dose-Response Curves under Unobserved Confounders from Observational Data [6.166869525631879]
本稿では,連続治療の因果効果を推定するための新しいフレームワークであるContiVAEについて述べる。
ContiVAEは既存の手法を最大62%上回り、その堅牢性と柔軟性を示す。
論文 参考訳(メタデータ) (2024-10-21T07:24:26Z) - Model-Based Inference and Experimental Design for Interference Using Partial Network Data [4.76518127830168]
本稿では,部分的ネットワークデータを用いた治療効果調整の評価と推定のためのフレームワークを提案する。
部分的ネットワークデータのみを用いて治療を割り当てる手順を説明する。
本研究では,インドとマラウイにおける情報拡散と観測グラフのシミュレーション実験によるアプローチの有効性を検証した。
論文 参考訳(メタデータ) (2024-06-17T17:27:18Z) - DOT-VAE: Disentangling One Factor at a Time [1.6114012813668934]
本稿では,変分オートエンコーダの潜伏空間を乱交空間で拡張し,Wake-Sleep-inspireed two-step algorithm for unsupervised disentanglementを用いて学習する手法を提案する。
我々のネットワークは、解釈可能な独立した因子を一度に1つのデータから切り離すことを学び、それを非絡み合った潜在空間の異なる次元にエンコードし、因子の数やそれらの共同分布について事前の仮定をしない。
論文 参考訳(メタデータ) (2022-10-19T22:53:02Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
本稿では,データセットバイアスによる負の効果を軽減するために,新しい感情認識ネットワーク(IERN)を提案する。
IERNの有効性を検証する一連の設計されたテストと、3つの感情ベンチマークの実験は、IERNが他の最先端のアプローチよりも優れていることを示した。
論文 参考訳(メタデータ) (2021-07-26T10:40:59Z) - Graph Infomax Adversarial Learning for Treatment Effect Estimation with
Networked Observational Data [9.08763820415824]
本稿では,処理効果推定のためのグラフ情報最大適応学習(GIAL)モデルを提案する。
我々は,GIALモデルの性能を2つのベンチマークデータセットで評価し,その結果が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-06-05T12:30:14Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
オフラインで収集されたデータセット(観測データ)を組み込んで、オンライン環境でのサンプル効率を改善する方法について検討する。
提案手法は,観測データを効率よく組み込んだ,分解された楽観的値反復 (DOVI) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-22T14:49:33Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
ニューラルネットワークの一般化能力を改善するための補助的学習目標を提案する。
我々は、異なるラベルを持つ最小差の例のペア、すなわち反ファクトまたはコントラストの例を使用し、タスクの根底にある因果構造を示す信号を与える。
このテクニックで訓練されたモデルは、配布外テストセットのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2020-04-20T02:47:49Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
代替薬に対する患者一人の反応など,個人レベルの因果効果の推定について検討した。
我々は,表現の誘導的処理群距離を正規化することにより,境界を最小化する表現学習アルゴリズムを考案した。
これらのアルゴリズムを拡張して、重み付き表現を同時に学習し、治療群距離をさらに削減する。
論文 参考訳(メタデータ) (2020-01-21T10:16:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。