論文の概要: Statistical Undersampling with Mutual Information and Support Points
- arxiv url: http://arxiv.org/abs/2412.14527v1
- Date: Thu, 19 Dec 2024 04:48:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:33:10.347158
- Title: Statistical Undersampling with Mutual Information and Support Points
- Title(参考訳): 相互情報と支援点を用いた統計的アンサンプ
- Authors: Alex Mak, Shubham Sahoo, Shivani Pandey, Yidan Yue, Linglong Kong,
- Abstract要約: 大規模データセットにおけるクラス不均衡と分布差は、機械学習の分類タスクにおいて重要な課題である。
本研究は2つの新しいアンダーサンプリング手法,すなわち相互情報に基づく階層化単純ランダムサンプリングとサポートポイント最適化を導入する。
- 参考スコア(独自算出の注目度): 4.118796935183671
- License:
- Abstract: Class imbalance and distributional differences in large datasets present significant challenges for classification tasks machine learning, often leading to biased models and poor predictive performance for minority classes. This work introduces two novel undersampling approaches: mutual information-based stratified simple random sampling and support points optimization. These methods prioritize representative data selection, effectively minimizing information loss. Empirical results across multiple classification tasks demonstrate that our methods outperform traditional undersampling techniques, achieving higher balanced classification accuracy. These findings highlight the potential of combining statistical concepts with machine learning to address class imbalance in practical applications.
- Abstract(参考訳): 大規模データセットにおけるクラス不均衡と分布差は、機械学習の分類タスクにおいて重大な課題を示し、しばしばバイアスモデルや少数クラスの予測性能が低下する。
本研究は2つの新しいアンダーサンプリング手法,すなわち相互情報に基づく階層化された単純なランダムサンプリングとサポートポイント最適化を導入する。
これらの方法は、情報損失を効果的に最小化する代表データ選択を優先する。
複数の分類タスクにまたがる実験結果から,本手法は従来のアンダーサンプ法より優れ,高いバランスの取れた分類精度が得られることが示された。
これらの知見は、統計的概念と機械学習を組み合わせることで、実践的応用におけるクラス不均衡に対処する可能性を浮き彫りにした。
関連論文リスト
- Learning Confidence Bounds for Classification with Imbalanced Data [42.690254618937196]
本稿では,学習理論と集中不等式を利用して従来のソリューションの欠点を克服する新しい枠組みを提案する。
本手法は, クラスごとに異なる不均衡度に効果的に適応できるため, より堅牢で信頼性の高い分類結果が得られる。
論文 参考訳(メタデータ) (2024-07-16T16:02:27Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - Imbalanced Classification via Explicit Gradient Learning From Augmented
Data [0.0]
本稿では、与えられた不均衡なデータセットを新しいマイノリティインスタンスに拡張する、新しい深層メタラーニング手法を提案する。
提案手法の利点は, 種々の不均衡比を持つ合成および実世界のデータセット上で実証される。
論文 参考訳(メタデータ) (2022-02-21T22:16:50Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
現代のディープニューラルネットワークは、破損したラベルやクラス不均衡を含むバイアス付きトレーニングデータに容易に適合する。
サンプル再重み付け手法は、このデータバイアス問題を緩和するために一般的に使用されている。
本稿では,データから直接明示的な重み付け方式を適応的に学習できるメタモデルを提案する。
論文 参考訳(メタデータ) (2022-02-11T13:49:51Z) - Contrastive Learning for Fair Representations [50.95604482330149]
訓練された分類モデルは、意図せずバイアスのある表現や予測につながる可能性がある。
対戦訓練のような既存の分類モデルのデバイアス化手法は、訓練に高価であり、最適化が困難であることが多い。
比較学習を取り入れたバイアス軽減手法を提案し、同じクラスラベルを共有するインスタンスに類似した表現を推奨する。
論文 参考訳(メタデータ) (2021-09-22T10:47:51Z) - A Novel Adaptive Minority Oversampling Technique for Improved
Classification in Data Imbalanced Scenarios [23.257891827728827]
異なるクラスに属するトレーニングサンプルの割合の不均衡は、しばしば従来の分類器の性能低下を引き起こす。
不均衡なデータに対処する新しい3ステップ手法を提案する。
論文 参考訳(メタデータ) (2021-03-24T09:58:02Z) - Conditional Wasserstein GAN-based Oversampling of Tabular Data for
Imbalanced Learning [10.051309746913512]
本稿では,条件付きWasserstein GANに基づくオーバーサンプリング手法を提案する。
実世界の7つのデータセット上で,標準的なオーバーサンプリング手法と不均衡なベースラインに対して,本手法をベンチマークした。
論文 参考訳(メタデータ) (2020-08-20T20:33:56Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
本稿では,複数のモデルを学習する手法を提案する。
分散シフトへの迅速な適応を促進するフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2020-06-12T12:23:50Z) - Compressing Large Sample Data for Discriminant Analysis [78.12073412066698]
判別分析フレームワーク内での大きなサンプルサイズに起因する計算問題を考察する。
線形および二次判別分析のためのトレーニングサンプル数を削減するための新しい圧縮手法を提案する。
論文 参考訳(メタデータ) (2020-05-08T05:09:08Z) - M2m: Imbalanced Classification via Major-to-minor Translation [79.09018382489506]
ほとんどの実世界のシナリオでは、ラベル付きトレーニングデータセットは非常にクラス不均衡であり、ディープニューラルネットワークは、バランスの取れたテスト基準への一般化に苦しむ。
本稿では,より頻度の低いクラスを,より頻度の低いクラスからのサンプルを翻訳することによって,この問題を緩和する新しい方法を提案する。
提案手法は,従来の再サンプリング法や再重み付け法と比較して,マイノリティクラスの一般化を著しく改善することを示す。
論文 参考訳(メタデータ) (2020-04-01T13:21:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。