The Skin Game: Revolutionizing Standards for AI Dermatology Model Comparison
- URL: http://arxiv.org/abs/2502.02500v1
- Date: Tue, 04 Feb 2025 17:15:36 GMT
- Title: The Skin Game: Revolutionizing Standards for AI Dermatology Model Comparison
- Authors: Łukasz Miętkiewicz, Leon Ciechanowski, Dariusz Jemielniak,
- Abstract summary: Deep Learning approaches in dermatological image classification have shown promising results, yet the field faces significant methodological challenges that impede proper evaluation.
This paper presents a systematic analysis of current methodological practices in skin disease classification research, revealing substantial inconsistencies in data preparation, augmentation strategies, and performance reporting.
We propose comprehensive methodological recommendations for model development, evaluation, and clinical deployment, emphasizing rigorous data preparation, systematic error analysis, and specialized protocols for different image types.
- Score: 0.6144680854063939
- License:
- Abstract: Deep Learning approaches in dermatological image classification have shown promising results, yet the field faces significant methodological challenges that impede proper evaluation. This paper presents a dual contribution: first, a systematic analysis of current methodological practices in skin disease classification research, revealing substantial inconsistencies in data preparation, augmentation strategies, and performance reporting; second, a comprehensive training and evaluation framework demonstrated through experiments with the DINOv2-Large vision transformer across three benchmark datasets (HAM10000, DermNet, ISIC Atlas). The analysis identifies concerning patterns, including pre-split data augmentation and validation-based reporting, potentially leading to overestimated metrics, while highlighting the lack of unified methodology standards. The experimental results demonstrate DINOv2's performance in skin disease classification, achieving macro-averaged F1-scores of 0.85 (HAM10000), 0.71 (DermNet), and 0.84 (ISIC Atlas). Attention map analysis reveals critical patterns in the model's decision-making, showing sophisticated feature recognition in typical presentations but significant vulnerabilities with atypical cases and composite images. Our findings highlight the need for standardized evaluation protocols and careful implementation strategies in clinical settings. We propose comprehensive methodological recommendations for model development, evaluation, and clinical deployment, emphasizing rigorous data preparation, systematic error analysis, and specialized protocols for different image types. To promote reproducibility, we provide our implementation code through GitHub. This work establishes a foundation for rigorous evaluation standards in dermatological image classification and provides insights for responsible AI implementation in clinical dermatology.
Related papers
- Benchmarking Embedding Aggregation Methods in Computational Pathology: A Clinical Data Perspective [32.93871326428446]
Recent advances in artificial intelligence (AI) are revolutionizing medical imaging and computational pathology.
A constant challenge in the analysis of digital Whole Slide Images (WSIs) is the problem of aggregating tens of thousands of tile-level image embeddings to a slide-level representation.
This study conducts a benchmarking analysis of ten slide-level aggregation techniques across nine clinically relevant tasks.
arXiv Detail & Related papers (2024-07-10T17:00:57Z) - Fairness Evolution in Continual Learning for Medical Imaging [47.52603262576663]
We study the behavior of Continual Learning (CL) strategies in medical imaging regarding classification performance.
We evaluate the Replay, Learning without Forgetting (LwF), LwF, and Pseudo-Label strategies.
LwF and Pseudo-Label exhibit optimal classification performance, but when including fairness metrics in the evaluation, it is clear that Pseudo-Label is less biased.
arXiv Detail & Related papers (2024-04-10T09:48:52Z) - Graph-Ensemble Learning Model for Multi-label Skin Lesion Classification
using Dermoscopy and Clinical Images [7.159532626507458]
This study introduces a Graph Convolution Network (GCN) to exploit prior co-occurrence between each category as a correlation matrix into the deep learning model for the multi-label classification.
We propose a Graph-Ensemble Learning Model (GELN) that views the prediction from GCN as complementary information of the predictions from the fusion model.
arXiv Detail & Related papers (2023-07-04T13:19:57Z) - MedFMC: A Real-world Dataset and Benchmark For Foundation Model
Adaptation in Medical Image Classification [41.16626194300303]
Foundation models, often pre-trained with large-scale data, have achieved paramount success in jump-starting various vision and language applications.
Recent advances further enable adapting foundation models in downstream tasks efficiently using only a few training samples.
Yet, the application of such learning paradigms in medical image analysis remains scarce due to the shortage of publicly accessible data and benchmarks.
arXiv Detail & Related papers (2023-06-16T01:46:07Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.