論文の概要: Bel Esprit: Multi-Agent Framework for Building AI Model Pipelines
- arxiv url: http://arxiv.org/abs/2412.14684v1
- Date: Thu, 19 Dec 2024 09:36:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:29:50.114529
- Title: Bel Esprit: Multi-Agent Framework for Building AI Model Pipelines
- Title(参考訳): Bel Esprit: AIモデルパイプライン構築のためのマルチエージェントフレームワーク
- Authors: Yunsu Kim, AhmedElmogtaba Abdelaziz, Thiago Castro Ferreira, Mohamed Al-Badrashiny, Hassan Sawaf,
- Abstract要約: 本稿では,ユーザ定義要求に基づいてAIモデルパイプラインを構築するための対話エージェントであるBel Espritを紹介する。
あいまいなユーザクエリからパイプラインを生成する上で,このフレームワークの有効性を示す。
詳細なエラー解析では、パイプライン構築における進行中の課題を強調している。
- 参考スコア(独自算出の注目度): 6.366591618050151
- License:
- Abstract: As the demand for artificial intelligence (AI) grows to address complex real-world tasks, single models are often insufficient, requiring the integration of multiple models into pipelines. This paper introduces Bel Esprit, a conversational agent designed to construct AI model pipelines based on user-defined requirements. Bel Esprit employs a multi-agent framework where subagents collaborate to clarify requirements, build, validate, and populate pipelines with appropriate models. We demonstrate the effectiveness of this framework in generating pipelines from ambiguous user queries, using both human-curated and synthetic data. A detailed error analysis highlights ongoing challenges in pipeline construction. Bel Esprit is available for a free trial at https://belesprit.aixplain.com.
- Abstract(参考訳): 人工知能(AI)の需要が増大して、複雑な現実世界のタスクに対処するようになると、単一モデルはしばしば不足し、複数のモデルをパイプラインに統合する必要がある。
本稿では,ユーザ定義要求に基づいてAIモデルパイプラインを構築するための対話エージェントであるBel Espritを紹介する。
Bel Esprit氏は、サブエージェントが要求を明確にし、ビルド、検証、適切なモデルでパイプラインをポップアップする、マルチエージェントフレームワークを使用している。
我々は,このフレームワークが不明瞭なユーザクエリからパイプラインを生成する上で,人為的および合成的データの両方を用いて有効であることを示す。
詳細なエラー解析では、パイプライン構築における進行中の課題を強調している。
Bel Espritはhttps://belesprit.aixplain.comで無料で試用できる。
関連論文リスト
- xLAM: A Family of Large Action Models to Empower AI Agent Systems [111.5719694445345]
AIエージェントタスク用に設計された大規模なアクションモデルであるxLAMをリリースする。
xLAMは、複数のエージェント能力ベンチマークで例外的なパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-09-05T03:22:22Z) - ToolACE: Winning the Points of LLM Function Calling [139.07157814653638]
ToolACEは、正確で複雑で多様なツール学習データを生成するように設計された自動エージェントパイプラインである。
我々は、合成データに基づいてトレーニングされたモデルが、8Bパラメータだけで、バークレー・ファンクション・カリング・リーダーボード上で最先端のパフォーマンスを達成することを実証した。
論文 参考訳(メタデータ) (2024-09-02T03:19:56Z) - Making Task-Oriented Dialogue Datasets More Natural by Synthetically Generating Indirect User Requests [6.33281463741573]
間接ユーザ要求(IUR)は、ヒューマン・ヒューマン・タスク指向の対話において一般的であり、聞き手からの世界的知識と実践的推論を必要とする。
大きな言語モデル(LLM)はこれらの要求を効果的に処理できるが、仮想アシスタントにデプロイされる小さなモデルはリソースの制約のためにしばしば苦労する。
論文 参考訳(メタデータ) (2024-06-12T01:18:04Z) - Model Callers for Transforming Predictive and Generative AI Applications [2.7195102129095003]
モデル呼び出し(model caller)と呼ばれる新しいソフトウェア抽象化を導入する。
モデル呼び出しは、AIとMLモデル呼び出しの仲介役として機能する。
我々は、モデル呼び出しのためのPythonライブラリのプロトタイプをリリースした。
論文 参考訳(メタデータ) (2024-04-17T12:21:06Z) - An Interpretable Ensemble of Graph and Language Models for Improving
Search Relevance in E-Commerce [22.449320058423886]
プラグアンドプレイグラフLanguage Model (PP-GLAM) を提案する。
このアプローチでは、均一なデータ処理パイプラインを備えたモジュラーフレームワークを使用します。
PP-GLAMは,実世界のマルチリンガル,マルチリージョンのeコマースデータセット上で,最先端のベースラインとプロプライエタリなモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-03-01T19:08:25Z) - Pipeline MoE: A Flexible MoE Implementation with Pipeline Parallelism [91.9372563527801]
既存のMoEモデルは、膨大な内部ノードとノード間通信オーバーヘッドに悩まされる。
本稿では,新しいMoEアーキテクチャであるPipeline MoE(PPMoE)を提案する。
PPMoEは、テンソル並列を組み込んだ専門家の並列処理を構築し、通信集約型の全対一のディスパッチとコレクションを置き換える。
論文 参考訳(メタデータ) (2023-04-22T14:09:14Z) - Modeling Quality and Machine Learning Pipelines through Extended Feature
Models [0.0]
本稿では,機能モデルメタモデルを適切に拡張した品質MLパイプラインのための新しいエンジニアリング手法を提案する。
提案されたアプローチでは、MLパイプライン、その品質要件(パイプライン全体と単一フェーズ)、各パイプラインフェーズを実装するアルゴリズムの品質特性をモデル化することができる。
論文 参考訳(メタデータ) (2022-07-15T15:20:28Z) - Plumber: A Modular Framework to Create Information Extraction Pipelines [1.3326219707058071]
PLUMBERは、コミュニティが作成したツールプールからユーザーが手動で自動的に適切なIEパイプラインを作成できる最初のフレームワークである。
このアプローチは、パイプラインを変更し、IEタスクを実行するためのインタラクティブな媒体を提供する。
論文 参考訳(メタデータ) (2022-06-03T08:10:35Z) - UKP-SQUARE: An Online Platform for Question Answering Research [50.35348764297317]
我々は、研究者向けのオンラインQAプラットフォームであるUKP-SQUAREを紹介した。
UKP-SQUAREでは、ユーザフレンドリーなWebインターフェースと統合テストを通じて、モダンスキルの大規模なコレクションをクエリし、分析することができる。
論文 参考訳(メタデータ) (2022-03-25T15:00:24Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Text Modular Networks: Learning to Decompose Tasks in the Language of
Existing Models [61.480085460269514]
本稿では,既存のモデルで解けるより単純なモデルに分解することで,複雑なタスクを解くための解釈可能なシステムを構築するためのフレームワークを提案する。
我々はこのフレームワークを用いて、ニューラルネットワークのファクトイド単一スパンQAモデルとシンボリック電卓で答えられるサブクエストに分解することで、マルチホップ推論問題に答えられるシステムであるModularQAを構築する。
論文 参考訳(メタデータ) (2020-09-01T23:45:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。