論文の概要: Secure and Privacy-Preserving Automated Machine Learning Operations into
End-to-End Integrated IoT-Edge-Artificial Intelligence-Blockchain Monitoring
System for Diabetes Mellitus Prediction
- arxiv url: http://arxiv.org/abs/2211.07643v2
- Date: Fri, 18 Aug 2023 00:32:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-21 20:03:34.384284
- Title: Secure and Privacy-Preserving Automated Machine Learning Operations into
End-to-End Integrated IoT-Edge-Artificial Intelligence-Blockchain Monitoring
System for Diabetes Mellitus Prediction
- Title(参考訳): 糖尿病予測のためのエンド・ツー・エンド統合IoT-Edge-Artificial Intelligence-Blockchainモニタリングシステムへのセキュア・プライバシ保護機械学習操作
- Authors: Alain Hennebelle, Leila Ismail, Huned Materwala, Juma Al Kaabi, Priya
Ranjan, Rajiv Janardhanan
- Abstract要約: 本稿では,危険因子に基づく糖尿病予測のためのIoT-edge-Artificial Intelligence (AI)-blockchainシステムを提案する。
提案システムはブロックチェーンによって支えられ、異なる病院の患者からリスクファクターデータの密集したビューを得る。
提案システムでは,最も正確なランダム林モデルを用いて,数値実験と比較解析を行った。
- 参考スコア(独自算出の注目度): 0.5825410941577593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diabetes Mellitus, one of the leading causes of death worldwide, has no cure
to date and can lead to severe health complications, such as retinopathy, limb
amputation, cardiovascular diseases, and neuronal disease, if left untreated.
Consequently, it becomes crucial to take precautionary measures to
avoid/predict the occurrence of diabetes. Machine learning approaches have been
proposed and evaluated in the literature for diabetes prediction. This paper
proposes an IoT-edge-Artificial Intelligence (AI)-blockchain system for
diabetes prediction based on risk factors. The proposed system is underpinned
by the blockchain to obtain a cohesive view of the risk factors data from
patients across different hospitals and to ensure security and privacy of the
user's data. Furthermore, we provide a comparative analysis of different
medical sensors, devices, and methods to measure and collect the risk factors
values in the system. Numerical experiments and comparative analysis were
carried out between our proposed system, using the most accurate random forest
(RF) model, and the two most used state-of-the-art machine learning approaches,
Logistic Regression (LR) and Support Vector Machine (SVM), using three
real-life diabetes datasets. The results show that the proposed system using RF
predicts diabetes with 4.57% more accuracy on average compared to LR and SVM,
with 2.87 times more execution time. Data balancing without feature selection
does not show significant improvement. The performance is improved by 1.14% and
0.02% after feature selection for PIMA Indian and Sylhet datasets respectively,
while it reduces by 0.89% for MIMIC III.
- Abstract(参考訳): 世界中の死因の1つである糖尿病は、現在までに治療法がなく、治療を受けていない場合、網膜症、手足切断、心血管疾患、神経疾患などの重篤な合併症を引き起こす可能性がある。
したがって、糖尿病の発生を回避・予測するための予防措置を講じることが不可欠となる。
糖尿病予測のための文献に機械学習アプローチが提案され,評価されている。
本稿では,危険因子に基づく糖尿病予測のためのIoT-edge-Artificial Intelligence (AI)-blockchainシステムを提案する。
提案システムは, 異なる病院の患者から得られたリスク要因データと, ユーザのデータのセキュリティとプライバシを確保するため, ブロックチェーンが基盤としている。
さらに, 医療用センサ, デバイス, およびシステム内のリスク因子値を測定・収集する手法の比較分析を行った。
最も正確なランダムフォレスト(rf)モデルを用いた数値実験と,3つの実生活糖尿病データセットを用いた2つの最先端機械学習手法であるロジスティック回帰(lr)とサポートベクターマシン(svm)の比較分析を行った。
その結果,RFを用いたシステムは,LRやSVMと比較して平均4.57%の精度で糖尿病を予測し,実行時間が2.87倍であることがわかった。
機能選択のないデータバランシングでは、大きな改善はない。
PIMA Indian と Sylhet のデータセットの特徴選択後、パフォーマンスは 1.14% と 0.02% 改善され、MIMIC III では 0.89% 向上した。
関連論文リスト
- SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - CDRH Seeks Public Comment: Digital Health Technologies for Detecting
Prediabetes and Undiagnosed Type 2 Diabetes [0.0]
FDAは、糖尿病および未診断型2型糖尿病の検出におけるデジタルヘルス技術(DHT)の役割について、公衆のコメントを求めた。
DHTは、グルコース、ダイエット、症状、コミュニティの洞察などの健康信号をキャプチャする。
リモートスクリーニングツールの恩恵を最も受けられるサブ人口には、農村住民、少数派グループ、リスクの高い個人、医療アクセスの制限がある。
論文 参考訳(メタデータ) (2023-12-18T14:20:53Z) - Machine Learning based prediction of Glucose Levels in Type 1 Diabetes
Patients with the use of Continuous Glucose Monitoring Data [0.0]
連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)デバイスは、患者の血糖値に関する詳細な、非侵襲的でリアルタイムな洞察を提供する。
将来のグルコースレベルの予測方法としての高度な機械学習(ML)モデルを活用することで、生活改善の実質的な品質がもたらされる。
論文 参考訳(メタデータ) (2023-02-24T19:10:40Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - HealthEdge: A Machine Learning-Based Smart Healthcare Framework for
Prediction of Type 2 Diabetes in an Integrated IoT, Edge, and Cloud Computing
System [0.0]
糖尿病の急激な増加は、糖尿病の発生を予防・予測するために予防措置を取る必要があることを要求する。
本稿では,IoT-エッジクラウド統合コンピューティングシステムにおける2型糖尿病予測のための機械学習ベースのスマートヘルスケアフレームワークであるHealthEdgeを提案する。
論文 参考訳(メタデータ) (2023-01-25T07:57:18Z) - SACDNet: Towards Early Type 2 Diabetes Prediction with Uncertainty for
Electronic Health Records [0.951828574518325]
本研究では,多頭部自己注意層と高密度層を用いた早期T2DM予測のためのニューラルネットワークアーキテクチャを提案する。
提案手法は、SACDNet(Self-Attention for Comorbid Disease Net)と呼ばれ、89.3%の精度とF1スコア89.1%の精度を実現している。
T2DM予測データセットも,糖尿病4,124例と非糖尿病181,767例からなる実世界の電子健康記録(EHR)データに基づいて構築されている。
論文 参考訳(メタデータ) (2023-01-12T07:14:47Z) - Smartphone-Based Test and Predictive Models for Rapid, Non-Invasive, and
Point-of-Care Monitoring of Ocular and Cardiovascular Complications Related
to Diabetes [0.0]
糖尿病の合併症としては、糖尿病網膜症や心血管疾患が挙げられる。
本研究は、これらの条件の機械学習によるスクリーニングの改良について述べる。
精度スコア、受信機動作特性曲線、学習曲線、その他のゲージは有望であった。
論文 参考訳(メタデータ) (2020-10-25T00:57:35Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
本稿では,電子カルテから心血管イベントを予測するための注意機構を備えたマルチタスク・リカレントニューラルネットワークを提案する。
提案手法は、NHS Foundation Trustの5年間のデータを用いて、標準的な臨床リスク予測器(QRISK)と機械学習の代替手段と比較される。
論文 参考訳(メタデータ) (2020-07-16T17:43:13Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
本研究は,集中治療室における危険因子の同定と医療関連感染症の予測に焦点をあてる。
感染発生率の低減に向けた意思決定を支援することを目的とする。
論文 参考訳(メタデータ) (2020-05-07T16:13:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。