論文の概要: Query pipeline optimization for cancer patient question answering systems
- arxiv url: http://arxiv.org/abs/2412.14751v1
- Date: Thu, 19 Dec 2024 11:30:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:32:03.365690
- Title: Query pipeline optimization for cancer patient question answering systems
- Title(参考訳): 癌患者質問応答システムのためのクエリパイプライン最適化
- Authors: Maolin He, Rena Gao, Mike Conway, Brian E. Chapman,
- Abstract要約: Retrieval-augmented Generation (RAG)は、クエリパイプラインを使用して関連する外部情報を取得することで、Large Language Models (LLM)における幻覚を緩和する。
本稿では,癌問合せシステムにおけるRAGクエリパイプラインの3視点最適化手法を提案する。
- 参考スコア(独自算出の注目度): 0.8437187555622164
- License:
- Abstract: Retrieval-augmented generation (RAG) mitigates hallucination in Large Language Models (LLMs) by using query pipelines to retrieve relevant external information and grounding responses in retrieved knowledge. However, query pipeline optimization for cancer patient question-answering (CPQA) systems requires separately optimizing multiple components with domain-specific considerations. We propose a novel three-aspect optimization approach for the RAG query pipeline in CPQA systems, utilizing public biomedical databases like PubMed and PubMed Central. Our optimization includes: (1) document retrieval, utilizing a comparative analysis of NCBI resources and introducing Hybrid Semantic Real-time Document Retrieval (HSRDR); (2) passage retrieval, identifying optimal pairings of dense retrievers and rerankers; and (3) semantic representation, introducing Semantic Enhanced Overlap Segmentation (SEOS) for improved contextual understanding. On a custom-developed dataset tailored for cancer-related inquiries, our optimized RAG approach improved the answer accuracy of Claude-3-haiku by 5.24% over chain-of-thought prompting and about 3% over a naive RAG setup. This study highlights the importance of domain-specific query optimization in realizing the full potential of RAG and provides a robust framework for building more accurate and reliable CPQA systems, advancing the development of RAG-based biomedical systems.
- Abstract(参考訳): Retrieval-augmented Generation (RAG) は、クエリパイプラインを使用して、関連する外部情報を取得し、検索した知識で応答をグラウンド化することで、Large Language Models (LLM)における幻覚を緩和する。
しかし,癌患者問合せ (CPQA) システムに対する問合せパイプラインの最適化には,複数のコンポーネントをドメイン固有の考慮で個別に最適化する必要がある。
本稿では, PubMed や PubMed Central などの公開バイオメディカルデータベースを活用し, CPQA システムにおける RAG クエリパイプラインの3次元最適化手法を提案する。
文書検索,NCBIリソースの比較分析,ハイブリッドセマンティックリアルタイム文書検索 (HSRDR) の導入,(2)パス検索,高密度検索と再ランカの最適ペア識別,(3)セマンティック拡張オーバーラップセグメンテーション (SEOS) の導入による文脈理解の改善。
がん関連問合せに適した独自のデータセットを用いて, 最適化されたRAGアプローチにより, チェーン・オブ・ソート・プロンプトよりも5.24%, 単純RAGセットアップより約3%, クロード3-俳句の解答精度が向上した。
本研究は、RAGの潜在能力を実現する上で、ドメイン固有のクエリ最適化の重要性を強調し、より正確で信頼性の高いCPQAシステムを構築するための堅牢なフレームワークを提供し、RAGベースのバイオメディカルシステムの開発を推進している。
関連論文リスト
- HawkBench: Investigating Resilience of RAG Methods on Stratified Information-Seeking Tasks [50.871243190126826]
HawkBenchは、RAGのパフォーマンスを厳格に評価するために設計された、人間ラベル付きマルチドメインベンチマークである。
情報探索行動に基づくタスクの階層化により、HawkBenchはRAGシステムが多様なユーザニーズにどのように適応するかを体系的に評価する。
論文 参考訳(メタデータ) (2025-02-19T06:33:39Z) - Transparent NLP: Using RAG and LLM Alignment for Privacy Q&A [15.86510147965235]
一般データ保護規則では、正確な処理情報を明確でアクセスしやすいものにする必要がある。
本稿では,その義務を果たすためのアライメント技術によって強化された,最先端の検索生成システムについて検討する。
論文 参考訳(メタデータ) (2025-02-10T16:42:00Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAGは、RAGシステムが解答不能なクエリを効果的に処理できるかどうかを評価するために設計されたフレームワークである。
我々は、6つの未解決カテゴリを持つ分類を定義し、UAEval4RAGは、多様で挑戦的なクエリを自動的に合成する。
論文 参考訳(メタデータ) (2024-12-16T19:11:55Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented Generation (RAG) は,大規模言語モデル (LLM) の性能向上のための有望なアプローチとして登場した。
医療用QAデータセットに様々な補助的要素を提供するMedRGB(MedRGB)を導入する。
実験結果から,検索した文書のノイズや誤情報の処理能力に限界があることが判明した。
論文 参考訳(メタデータ) (2024-11-14T06:19:18Z) - Query Optimization for Parametric Knowledge Refinement in Retrieval-Augmented Large Language Models [26.353428245346166]
Extract-Refine-Retrieve-Read (ERRR)フレームワークは、Retrieval-Augmented Generation (RAG)システムにおける事前検索情報ギャップを埋めるように設計されている。
RAGで使用される従来のクエリ最適化手法とは異なり、ERRRフレームワークはLarge Language Models (LLM) から知識を抽出することから始まる。
論文 参考訳(メタデータ) (2024-11-12T14:12:45Z) - Toward Optimal Search and Retrieval for RAG [39.69494982983534]
Retrieval-augmented Generation (RAG)は、Large Language Models (LLM)に関連するメモリ関連の課題に対処するための有望な方法である。
ここでは、質問回答(QA)などの共通タスクに対して、レトリバーをRAGパイプラインに最適化する方法を理解することを目的としている。
論文 参考訳(メタデータ) (2024-11-11T22:06:51Z) - Do RAG Systems Cover What Matters? Evaluating and Optimizing Responses with Sub-Question Coverage [74.70255719194819]
サブクエストカバレッジに基づく新しいフレームワークを導入し、RAGシステムが質問の異なる面にどのように対処するかを計測する。
このフレームワークを使用して、You.com、Perplexity AI、Bing Chatの3つの商用生成応答エンジンを評価します。
すべての回答エンジンは、バックグラウンドやフォローアップよりも、コアサブクエストを頻繁にカバーしていますが、コアサブクエストの約50%を見逃しています。
論文 参考訳(メタデータ) (2024-10-20T22:59:34Z) - Telco-DPR: A Hybrid Dataset for Evaluating Retrieval Models of 3GPP Technical Specifications [0.8999666725996975]
本稿では,第3世代パートナーシッププロジェクト技術文書を用いた通信分野を対象としたQAシステムを提案する。
テキストとテーブルを組み合わせたハイブリッドデータセットであるTelco-DPRが提示され、一連の合成質問/回答ペアが含まれている。
トップK精度と平均相反ランク(MRR)を用いて、検索モデルの評価と比較を行う。
提案するQAシステムは,改良されたRAGモデルと生成事前学習変換器(GPT)-4を用いて,解答精度を14%向上させる。
論文 参考訳(メタデータ) (2024-10-15T16:37:18Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
本稿では,複雑なQAタスクに対する適応ノート拡張RAG(Adaptive Note-Enhanced RAG)と呼ばれる汎用RAGアプローチを提案する。
具体的には、Adaptive-Noteは、知識の成長に関する包括的な視点を導入し、ノート形式で新しい情報を反復的に収集する。
さらに,適切な知識探索を促進するために,適応的な音符ベースの停止探索戦略を用いて,「何を検索し,いつ停止するか」を判断する。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に着目し, 完全性, 幻覚, 不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - Blended RAG: Improving RAG (Retriever-Augmented Generation) Accuracy with Semantic Search and Hybrid Query-Based Retrievers [0.0]
Retrieval-Augmented Generation (RAG) は、大規模言語モデル (LLM) で文書のプライベートな知識基盤を注入し、生成的Q&A (Question-Answering) システムを構築するための一般的なアプローチである。
本稿では,Vector インデックスや Sparse インデックスなどのセマンティック検索手法をハイブリッドクエリ手法と組み合わせた 'Blended RAG' 手法を提案する。
本研究は,NQ や TREC-COVID などの IR (Information Retrieval) データセットの検索結果の改善と,新たなベンチマーク設定を行う。
論文 参考訳(メタデータ) (2024-03-22T17:13:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。