Agent-Temporal Credit Assignment for Optimal Policy Preservation in Sparse Multi-Agent Reinforcement Learning
- URL: http://arxiv.org/abs/2412.14779v1
- Date: Thu, 19 Dec 2024 12:05:13 GMT
- Title: Agent-Temporal Credit Assignment for Optimal Policy Preservation in Sparse Multi-Agent Reinforcement Learning
- Authors: Aditya Kapoor, Sushant Swamy, Kale-ab Tessera, Mayank Baranwal, Mingfei Sun, Harshad Khadilkar, Stefano V. Albrecht,
- Abstract summary: In multi-agent environments, agents often struggle to learn optimal policies due to sparse or delayed global rewards.
We introduce Temporal-Agent Reward Redistribution (TAR$2$), a novel approach designed to address the agent-temporal credit assignment problem.
TAR$2$ decomposes sparse global rewards into time-step-specific rewards and calculates agent-specific contributions to these rewards.
- Score: 14.003793644193605
- License:
- Abstract: In multi-agent environments, agents often struggle to learn optimal policies due to sparse or delayed global rewards, particularly in long-horizon tasks where it is challenging to evaluate actions at intermediate time steps. We introduce Temporal-Agent Reward Redistribution (TAR$^2$), a novel approach designed to address the agent-temporal credit assignment problem by redistributing sparse rewards both temporally and across agents. TAR$^2$ decomposes sparse global rewards into time-step-specific rewards and calculates agent-specific contributions to these rewards. We theoretically prove that TAR$^2$ is equivalent to potential-based reward shaping, ensuring that the optimal policy remains unchanged. Empirical results demonstrate that TAR$^2$ stabilizes and accelerates the learning process. Additionally, we show that when TAR$^2$ is integrated with single-agent reinforcement learning algorithms, it performs as well as or better than traditional multi-agent reinforcement learning methods.
Related papers
- $TAR^2$: Temporal-Agent Reward Redistribution for Optimal Policy Preservation in Multi-Agent Reinforcement Learning [7.97295726921338]
Temporal-Agent Reward Redistribution $TAR2$ is a novel approach that decomposes sparse global rewards into agent-specific, time-step-specific components.
We show that $TAR2$ aligns with potential-based reward shaping, preserving the same optimal policies as the original environment.
arXiv Detail & Related papers (2025-02-07T12:07:57Z) - STAS: Spatial-Temporal Return Decomposition for Multi-agent
Reinforcement Learning [10.102447181869005]
We introduce a novel method that learns credit assignment in both temporal and spatial dimensions.
Our results demonstrate that our method effectively assigns spatial-temporal credit, outperforming all state-of-the-art baselines.
arXiv Detail & Related papers (2023-04-15T10:09:03Z) - Distributional Reward Estimation for Effective Multi-Agent Deep
Reinforcement Learning [19.788336796981685]
We propose a novel Distributional Reward Estimation framework for effective Multi-Agent Reinforcement Learning (DRE-MARL)
Our main idea is to design the multi-action-branch reward estimation and policy-weighted reward aggregation for stabilized training.
The superiority of the DRE-MARL is demonstrated using benchmark multi-agent scenarios, compared with the SOTA baselines in terms of both effectiveness and robustness.
arXiv Detail & Related papers (2022-10-14T08:31:45Z) - Provably Efficient Offline Reinforcement Learning with Trajectory-Wise
Reward [66.81579829897392]
We propose a novel offline reinforcement learning algorithm called Pessimistic vAlue iteRaTion with rEward Decomposition (PARTED)
PARTED decomposes the trajectory return into per-step proxy rewards via least-squares-based reward redistribution, and then performs pessimistic value based on the learned proxy reward.
To the best of our knowledge, PARTED is the first offline RL algorithm that is provably efficient in general MDP with trajectory-wise reward.
arXiv Detail & Related papers (2022-06-13T19:11:22Z) - Learning Long-Term Reward Redistribution via Randomized Return
Decomposition [18.47810850195995]
We consider the problem formulation of episodic reinforcement learning with trajectory feedback.
It refers to an extreme delay of reward signals, in which the agent can only obtain one reward signal at the end of each trajectory.
We propose a novel reward redistribution algorithm, randomized return decomposition (RRD), to learn a proxy reward function for episodic reinforcement learning.
arXiv Detail & Related papers (2021-11-26T13:23:36Z) - Anti-Concentrated Confidence Bonuses for Scalable Exploration [57.91943847134011]
Intrinsic rewards play a central role in handling the exploration-exploitation trade-off.
We introduce emphanti-concentrated confidence bounds for efficiently approximating the elliptical bonus.
We develop a practical variant for deep reinforcement learning that is competitive with contemporary intrinsic rewards on Atari benchmarks.
arXiv Detail & Related papers (2021-10-21T15:25:15Z) - On Reward-Free RL with Kernel and Neural Function Approximations:
Single-Agent MDP and Markov Game [140.19656665344917]
We study the reward-free RL problem, where an agent aims to thoroughly explore the environment without any pre-specified reward function.
We tackle this problem under the context of function approximation, leveraging powerful function approximators.
We establish the first provably efficient reward-free RL algorithm with kernel and neural function approximators.
arXiv Detail & Related papers (2021-10-19T07:26:33Z) - Reinforcement Learning in Reward-Mixing MDPs [74.41782017817808]
episodic reinforcement learning in a reward-mixing Markov decision process (MDP)
cdot S2 A2)$ episodes, where $H$ is time-horizon and $S, A$ are the number of states and actions respectively.
epsilon$-optimal policy after exploring $tildeO(poly(H,epsilon-1) cdot S2 A2)$ episodes, where $H$ is time-horizon and $S, A$ are the number of states and actions respectively.
arXiv Detail & Related papers (2021-10-07T18:55:49Z) - Multi-agent Policy Optimization with Approximatively Synchronous
Advantage Estimation [55.96893934962757]
In multi-agent system, polices of different agents need to be evaluated jointly.
In current methods, value functions or advantage functions use counter-factual joint actions which are evaluated asynchronously.
In this work, we propose the approximatively synchronous advantage estimation.
arXiv Detail & Related papers (2020-12-07T07:29:19Z) - Learning Guidance Rewards with Trajectory-space Smoothing [22.456737935789103]
Long-term temporal credit assignment is an important challenge in deep reinforcement learning.
Existing policy-gradient and Q-learning algorithms rely on dense environmental rewards that provide rich short-term supervision.
Recent works have proposed algorithms to learn dense "guidance" rewards that could be used in place of the sparse or delayed environmental rewards.
arXiv Detail & Related papers (2020-10-23T23:55:06Z) - Reward-Free Exploration for Reinforcement Learning [82.3300753751066]
We propose a new "reward-free RL" framework to isolate the challenges of exploration.
We give an efficient algorithm that conducts $tildemathcalO(S2Amathrmpoly(H)/epsilon2)$ episodes of exploration.
We also give a nearly-matching $Omega(S2AH2/epsilon2)$ lower bound, demonstrating the near-optimality of our algorithm in this setting.
arXiv Detail & Related papers (2020-02-07T14:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.