Efficient optical cat state generation using squeezed few-photon superposition states
- URL: http://arxiv.org/abs/2412.14798v1
- Date: Thu, 19 Dec 2024 12:38:25 GMT
- Title: Efficient optical cat state generation using squeezed few-photon superposition states
- Authors: Haoyuan Luo, Sahand Mahmoodian,
- Abstract summary: Optical Schr"odinger cat states are non-Gaussian states with applications in quantum technologies.
We propose using squeezed superpositions of zero and two photons, $|thetarangle = cos(theta/2)|0rangle + sin(theta/2)|2rangle$, as ingredients for protocols to efficiently generate high-fidelity cat states.
- Score: 0.0
- License:
- Abstract: Optical Schr\"{o}dinger cat states are non-Gaussian states with applications in quantum technologies, such as for building error-correcting states in quantum computing. Yet the efficient generation of high-fidelity optical Schr\"{o}dinger cat states is an outstanding problem in quantum optics. Here, we propose using squeezed superpositions of zero and two photons, $|\theta\rangle = \cos{(\theta/2)}|0\rangle + \sin{(\theta/2)}|2\rangle$, as ingredients for protocols to efficiently generate high-fidelity cat states. We present a protocol using linear optics with success probability $P\gtrsim 50\%$ that can generate cat states of size $|\alpha|^2=5$ with fidelity $F>0.99$. The protocol relies only on detecting single photons and is remarkably tolerant of loss, with $2\%$ detection loss still achieving $F>0.98$ for cats with $|\alpha|^2=5$. We also show that squeezed $\theta$ states are ideal candidates for nonlinear photon subtraction using a two-level system with near deterministic success probability and fidelity $F>0.98$ for cat states of size $|\alpha|^2=5$. Schemes for generating $\theta$ states using quantum emitters are also presented. Our protocols can be implemented with current state-of-the-art quantum optics experiments.
Related papers
- Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Generation of heralded optical `Schroedinger cat' states by
photon-addition [3.093409936654924]
We report the first experimental realization of optical "Schr"odinger cats" by adding a photon to a squeezed vacuum state.
We generate "Schr"odinger cats" at rates exceeding $8.5 times 104$ counts per second.
arXiv Detail & Related papers (2023-06-22T16:21:42Z) - Experimental demonstration of optimal unambiguous two-out-of-four
quantum state elimination [52.77024349608834]
A core principle of quantum theory is that non-orthogonal quantum states cannot be perfectly distinguished with single-shot measurements.
Here we implement a quantum state elimination measurement which unambiguously rules out two of four pure, non-orthogonal quantum states.
arXiv Detail & Related papers (2022-06-30T18:00:01Z) - All-optical generation of deterministic squeezed Schr\"odinger-cat
states [0.7643466948537707]
This work proposes an all-optical scheme to deterministically prepare the squeezed Schr$ddotmathrmo$dinger-cat state with high speed.
By controlling the driving fields in our system, the two-photon loss can be adjustable, which can accelerate the generation of squeezed Schr$ddotmathrmo$dinger-cat states.
arXiv Detail & Related papers (2022-06-06T11:03:23Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Amplification of optical Schr\"{o}dinger cat states with implementation
protocol based on frequency comb [4.0393170834193235]
We propose a scheme to generate large-size Schr"odinger cat states based on linear operations of Fock states and squeezed vacuum states.
A feasible configuration based on a quantum frequency comb is developed to realize the large-size cat state generation scheme.
arXiv Detail & Related papers (2021-12-27T17:14:51Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Efficient Verification of Anticoncentrated Quantum States [0.38073142980733]
I present a novel method for estimating the fidelity $F(mu,tau)$ between a preparable quantum state $mu$ and a classically specified target state $tau$.
I also present a more sophisticated version of the method, which uses any efficiently preparable and well-characterized quantum state as an importance sampler.
arXiv Detail & Related papers (2020-12-15T18:01:11Z) - Generation of Schr\"odinger cat states through photon-assisted
Landau-Zener-St\"uckelberg interferometry [0.0]
We propose a conceptually new method for creating Schr"odinger cat states, based on photon-assisted Landau-Zener-St"uckelberg interferometry.
We show that by initializing the qubit in one of its basis states, performing three consecutive sweeps of the qubit energy splitting across the 1-photon resonance, the parity of the photon field can be purified to very high degree.
arXiv Detail & Related papers (2020-08-27T14:37:57Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z) - Bosonic quantum communication across arbitrarily high loss channels [68.58838842613457]
A general attenuator $Phi_lambda, sigma$ is a bosonic quantum channel that acts by combining the input with a fixed environment state.
We show that for any arbitrary value of $lambda>0$ there exists a suitable single-mode state $sigma(lambda)$.
Our result holds even when we fix an energy constraint at the input of the channel, and implies that quantum communication at a constant rate is possible even in the limit of arbitrarily low transmissivity.
arXiv Detail & Related papers (2020-03-19T16:50:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.