Efficient Experimental Qudit State Estimation via Point Tomography
- URL: http://arxiv.org/abs/2412.14915v1
- Date: Thu, 19 Dec 2024 14:49:36 GMT
- Title: Efficient Experimental Qudit State Estimation via Point Tomography
- Authors: D. Martínez, L. Pereira, K. Sawada, P. González, J. Cariñe, M. Muñoz, A. Delgado, E. S. Gómez, S. P. Walborn, G. Lima,
- Abstract summary: Point tomography is a new approach to the problem of state estimation.
Here we demonstrate the experimental viability of point tomography.
We achieve a precision close to the Gill-Massar limit with a single few-outcome measurement.
- Score: 0.0
- License:
- Abstract: Point tomography is a new approach to the problem of state estimation, which is arguably the most efficient and simple method for modern high-precision quantum information experiments. In this scenario, the experimenter knows the target state that their device should prepare, except that intrinsic systematic errors will create small discrepancies in the state actually produced. By introducing a new kind of informationally complete measurement, dubbed Fisher-symmetric measurements, point tomography determines deviations from the expected state with optimal efficiency. In this method, the number of outcomes of a measurement saturating the Gill-Massar limit for reconstructing a $d$-dimensional quantum states can be reduced from $\sim 4d-3$ to only $2d-1$ outcomes. Thus, providing better scalability as the dimension increases. Here we demonstrate the experimental viability of point tomography. Using a modern photonic platform constructed with state-of-the-art multicore optical fiber technology, we generate 4-dimensional quantum states and implement seven-outcome Fisher-symmetric measurements. Our experimental results exhibit the main feature of point tomography, namely a precision close to the Gill-Massar limit with a single few-outcome measurement. Specifically, we achieved a precision of $3.8/N$ while the Gill-Massar limit for $d=4$ is $3/N$ ($N$ being the ensemble size).
Related papers
- Experimental investigation of a multi-photon Heisenberg-limited interferometric scheme: the effect of imperfections [0.0]
We show how to achieve the exact Heisenberg limit (HL) in ab-initio phase estimation with $N=3$ photon-passes.
The advantage of the HL over the SNL increases with the number of resources used.
We show that the expected usefulness of the prepared triphoton state for HL phase estimation is significantly degraded by even quite small experimental imperfections.
arXiv Detail & Related papers (2024-02-29T12:04:36Z) - Lower bounds for learning quantum states with single-copy measurements [3.2590610391507444]
We study the problems of quantum tomography and shadow tomography using measurements performed on individual copies of an unknown $d$-dimensional state.
In particular, this rigorously establishes the optimality of the folklore Pauli tomography" algorithm in terms of its complexity.
arXiv Detail & Related papers (2022-07-29T02:26:08Z) - Quantum state tomography with tensor train cross approximation [84.59270977313619]
We show that full quantum state tomography can be performed for such a state with a minimal number of measurement settings.
Our method requires exponentially fewer state copies than the best known tomography method for unstructured states and local measurements.
arXiv Detail & Related papers (2022-07-13T17:56:28Z) - Experimental demonstration of optimal unambiguous two-out-of-four
quantum state elimination [52.77024349608834]
A core principle of quantum theory is that non-orthogonal quantum states cannot be perfectly distinguished with single-shot measurements.
Here we implement a quantum state elimination measurement which unambiguously rules out two of four pure, non-orthogonal quantum states.
arXiv Detail & Related papers (2022-06-30T18:00:01Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
We adapt common neural network models to learn complex groundstate wavefunctions for several molecular qubit Hamiltonians.
We find that using a neural network model provides a robust improvement over using single-copy measurement outcomes alone to reconstruct observables.
arXiv Detail & Related papers (2022-06-30T17:45:05Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Fourier-style Quantum State Tomography and Purity Measurement of a
Multi-qubit System from Bloch Rotations [0.0]
We consider the use of random-axis measurements for quantum state tomography and state purity estimation.
We propose a simple protocol which relies on single-pulse X/Y rotations only.
arXiv Detail & Related papers (2021-01-14T20:38:39Z) - Neural network quantum state tomography in a two-qubit experiment [52.77024349608834]
Machine learning inspired variational methods provide a promising route towards scalable state characterization for quantum simulators.
We benchmark and compare several such approaches by applying them to measured data from an experiment producing two-qubit entangled states.
We find that in the presence of experimental imperfections and noise, confining the variational manifold to physical states greatly improves the quality of the reconstructed states.
arXiv Detail & Related papers (2020-07-31T17:25:12Z) - Estimation of pure states using three measurement bases [0.0]
We introduce a new method to estimate unknown pure $d$-dimensional quantum states using the probability distributions associated with only three measurement bases.
The viability of the protocol is experimentally demonstrated using two different and complementary high-dimensional quantum information platforms.
arXiv Detail & Related papers (2020-06-05T03:28:51Z) - Semi-device-dependent blind quantum tomography [1.3075880857448061]
Current schemes typically require measurement devices for tomography that are a priori calibrated to high precision.
We show that exploiting the natural low-rank structure of quantum states of interest suffices to arrive at a highly scalable blind' tomography scheme.
We numerically demonstrate that robust blind quantum tomography is possible in a practical setting inspired by an implementation of trapped ions.
arXiv Detail & Related papers (2020-06-04T18:00:04Z) - Quantum probes for universal gravity corrections [62.997667081978825]
We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
arXiv Detail & Related papers (2020-02-13T19:35:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.