DroughtSet: Understanding Drought Through Spatial-Temporal Learning
- URL: http://arxiv.org/abs/2412.15075v1
- Date: Thu, 19 Dec 2024 17:24:15 GMT
- Title: DroughtSet: Understanding Drought Through Spatial-Temporal Learning
- Authors: Xuwei Tan, Qian Zhao, Yanlan Liu, Xueru Zhang,
- Abstract summary: Drought is one of the most destructive and expensive natural disasters.
We propose a new dataset, DroughtSet, which integrates relevant predictive features and three drought indices.
Our model learns from the spatial and temporal information of physical and biological features to predict three types of droughts simultaneously.
- Score: 10.430055605915895
- License:
- Abstract: Drought is one of the most destructive and expensive natural disasters, severely impacting natural resources and risks by depleting water resources and diminishing agricultural yields. Under climate change, accurately predicting drought is critical for mitigating drought-induced risks. However, the intricate interplay among the physical and biological drivers that regulate droughts limits the predictability and understanding of drought, particularly at a subseasonal to seasonal (S2S) time scale. While deep learning has been demonstrated with potential in addressing climate forecasting challenges, its application to drought prediction has received relatively less attention. In this work, we propose a new dataset, DroughtSet, which integrates relevant predictive features and three drought indices from multiple remote sensing and reanalysis datasets across the contiguous United States (CONUS). DroughtSet specifically provides the machine learning community with a new real-world dataset to benchmark drought prediction models and more generally, time-series forecasting methods. Furthermore, we propose a spatial-temporal model SPDrought to predict and interpret S2S droughts. Our model learns from the spatial and temporal information of physical and biological features to predict three types of droughts simultaneously. Multiple strategies are employed to quantify the importance of physical and biological features for drought prediction. Our results provide insights for researchers to better understand the predictability and sensitivity of drought to biological and physical conditions. We aim to contribute to the climate field by proposing a new tool to predict and understand the occurrence of droughts and provide the AI community with a new benchmark to study deep learning applications in climate science.
Related papers
- Analysis of Droughts and Their Intensities in California from 2000 to 2020 [1.0839935418172268]
Drought has been perceived as a persistent threat globally and the complex mechanism of various factors contributing to its emergence makes it more troublesome to understand.
Droughts and their severity trends have been a point of concern in the USA as well, since the economic impact of droughts has been substantial.
California is the biggest agricultural contributor to the United States with its share amounting up to 12% approximately for all of US agricultural produce.
arXiv Detail & Related papers (2024-11-06T22:57:03Z) - SEN12-WATER: A New Dataset for Hydrological Applications and its Benchmarking [40.996860106131244]
Climate and increasing droughts pose significant challenges to water resource management around the world.
We present a new dataset, SEN12-WATER, along with a benchmark using a end-to-end Deep Learning framework for proactive drought-related analysis.
arXiv Detail & Related papers (2024-09-25T16:50:59Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
We train a deep neural network to predict a phenological index from meteorological time series.
We find that this approach outperforms traditional process-based models.
arXiv Detail & Related papers (2024-01-08T15:29:23Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - On the Generalization of Agricultural Drought Classification from
Climate Data [0.1908788674366693]
Droughts have a slow onset and depend on various external factors, making drought detection in climate data difficult.
We build upon soil moisture index (SMI) obtained from a hydrological model.
We compare different models with and without sequential inductive bias in classifying droughts based on SMI.
arXiv Detail & Related papers (2021-11-30T14:49:46Z) - An Evaluation of Machine Learning and Deep Learning Models for Drought
Prediction using Weather Data [1.1977931648859175]
Drought is a serious natural disaster that has a long duration and a wide range of influence.
To decrease the drought-caused losses, drought prediction is the basis of making the corresponding drought prevention and disaster reduction measures.
It remains unknown whether drought can be precisely predicted or not with machine learning models using weather data.
arXiv Detail & Related papers (2021-07-06T10:19:43Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
Wildfire is one of the biggest disasters that frequently occurs on the west coast of the United States.
We propose static and dynamic prediction models to analyze and assess the areas with high wildfire risks in California.
arXiv Detail & Related papers (2021-03-14T17:56:17Z) - A Data Scientist's Guide to Streamflow Prediction [55.22219308265945]
We focus on the element of hydrologic rainfall--runoff models and their application to forecast floods and predict streamflow.
This guide aims to help interested data scientists gain an understanding of the problem, the hydrologic concepts involved, and the details that come up along the way.
arXiv Detail & Related papers (2020-06-05T08:04:37Z) - Prediction of short and long-term droughts using artificial neural
networks and hydro-meteorological variables [0.0]
Models of Artificial Neural Network (ANN) are employed to predict short and long-term of droughts by using Standardized Precipitation Index (SPI) at different time scales.
The results illustrate that the application of all hydro-meteorological variables significantly improves the prediction of SPI at different time scales.
arXiv Detail & Related papers (2020-06-03T23:20:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.