LGAR: Zero-Shot LLM-Guided Neural Ranking for Abstract Screening in Systematic Literature Reviews
- URL: http://arxiv.org/abs/2505.24757v2
- Date: Fri, 06 Jun 2025 06:31:00 GMT
- Title: LGAR: Zero-Shot LLM-Guided Neural Ranking for Abstract Screening in Systematic Literature Reviews
- Authors: Christian Jaumann, Andreas Wiedholz, Annemarie Friedrich,
- Abstract summary: Systematic literature reviews aim to identify and evaluate all relevant papers on a topic.<n>To date, abstract screening methods using large language models (LLMs) focus on binary classification settings.<n>We propose LGAR, a zero-shot LLM Guided Abstract Ranker composed of an LLM based graded relevance scorer and a dense re-ranker.
- Score: 0.9314555897827079
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The scientific literature is growing rapidly, making it hard to keep track of the state-of-the-art. Systematic literature reviews (SLRs) aim to identify and evaluate all relevant papers on a topic. After retrieving a set of candidate papers, the abstract screening phase determines initial relevance. To date, abstract screening methods using large language models (LLMs) focus on binary classification settings; existing question answering (QA) based ranking approaches suffer from error propagation. LLMs offer a unique opportunity to evaluate the SLR's inclusion and exclusion criteria, yet, existing benchmarks do not provide them exhaustively. We manually extract these criteria as well as research questions for 57 SLRs, mostly in the medical domain, enabling principled comparisons between approaches. Moreover, we propose LGAR, a zero-shot LLM Guided Abstract Ranker composed of an LLM based graded relevance scorer and a dense re-ranker. Our extensive experiments show that LGAR outperforms existing QA-based methods by 5-10 pp. in mean average precision. Our code and data is publicly available.
Related papers
- Criteria-Based LLM Relevance Judgments [5.478764356647438]
Large Language Models (LLMs) provide a scalable solution by generating relevance labels directly through prompting.<n>We propose the Multi-Criteria framework for LLM-based relevance judgments, decomposing the notion of relevance into multiple criteria.<n>Our results demonstrate that Multi-Criteria judgments enhance the system ranking/leaderboard performance.
arXiv Detail & Related papers (2025-07-13T04:21:21Z) - Likert or Not: LLM Absolute Relevance Judgments on Fine-Grained Ordinal Scales [3.4068099825211986]
Two most common prompts to elicit relevance judgments are pointwise scoring and listwise ranking.<n>The current research community consensus is that listwise ranking yields superior performance.<n>In tension with this hypothesis, we find that the gap between pointwise scoring and listwise ranking shrinks when pointwise scoring is implemented using a sufficiently large ordinal relevance label space.
arXiv Detail & Related papers (2025-05-25T21:41:35Z) - Rankers, Judges, and Assistants: Towards Understanding the Interplay of LLMs in Information Retrieval Evaluation [44.58099275559231]
Large language models (LLMs) are increasingly integral to information retrieval (IR), powering ranking, evaluation, and AI-assisted content creation.<n>This paper synthesizes existing research and presents novel experiment designs that explore how LLM-based rankers and assistants influence LLM-based judges.
arXiv Detail & Related papers (2025-03-24T19:24:40Z) - Rank-R1: Enhancing Reasoning in LLM-based Document Rerankers via Reinforcement Learning [76.50690734636477]
We introduce Rank-R1, a novel LLM-based reranker that performs reasoning over both the user query and candidate documents before performing the ranking task.<n>Our experiments on the TREC DL and BRIGHT datasets show that Rank-R1 is highly effective, especially for complex queries.
arXiv Detail & Related papers (2025-03-08T03:14:26Z) - Latent Factor Models Meets Instructions: Goal-conditioned Latent Factor Discovery without Task Supervision [50.45597801390757]
Instruct-LF is a goal-oriented latent factor discovery system.<n>It integrates instruction-following ability with statistical models to handle noisy datasets.
arXiv Detail & Related papers (2025-02-21T02:03:08Z) - LitLLMs, LLMs for Literature Review: Are we there yet? [15.785989492351684]
This paper explores the zero-shot abilities of recent Large Language Models in assisting with the writing of literature reviews based on an abstract.<n>For retrieval, we introduce a novel two-step search strategy that first uses an LLM to extract meaningful keywords from the abstract of a paper.<n>In the generation phase, we propose a two-step approach that first outlines a plan for the review and then executes steps in the plan to generate the actual review.
arXiv Detail & Related papers (2024-12-15T01:12:26Z) - Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
Large language models (LLMs) have been employed in reranking tasks through a sequence-to-sequence approach.
This reranking paradigm requires a sliding window strategy to iteratively handle larger candidate sets.
We propose a novel self-calibrated listwise reranking method, which aims to leverage LLMs to produce global relevance scores for ranking.
arXiv Detail & Related papers (2024-11-07T10:31:31Z) - FineSurE: Fine-grained Summarization Evaluation using LLMs [22.62504593575933]
FineSurE is a fine-grained evaluator specifically tailored for the summarization task using large language models (LLMs)
It also employs completeness and conciseness criteria, in addition to faithfulness, enabling multi-dimensional assessment.
arXiv Detail & Related papers (2024-07-01T02:20:28Z) - Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
We study how well large language models (LLMs) explain their generations through rationales.
We show that prompting-based methods are less "faithful" than attribution-based explanations.
arXiv Detail & Related papers (2024-06-28T20:06:30Z) - Zero-shot Generative Large Language Models for Systematic Review
Screening Automation [55.403958106416574]
This study investigates the effectiveness of using zero-shot large language models for automatic screening.
We evaluate the effectiveness of eight different LLMs and investigate a calibration technique that uses a predefined recall threshold.
arXiv Detail & Related papers (2024-01-12T01:54:08Z) - Benchmarking Generation and Evaluation Capabilities of Large Language Models for Instruction Controllable Summarization [132.25202059478065]
We benchmark large language models (LLMs) on instruction controllable text summarization.
Our study reveals that instruction controllable text summarization remains a challenging task for LLMs.
arXiv Detail & Related papers (2023-11-15T18:25:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.