論文の概要: Confidence in the Reasoning of Large Language Models
- arxiv url: http://arxiv.org/abs/2412.15296v1
- Date: Thu, 19 Dec 2024 10:04:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:21:56.333288
- Title: Confidence in the Reasoning of Large Language Models
- Title(参考訳): 大規模言語モデルの推論における信頼
- Authors: Yudi Pawitan, Chris Holmes,
- Abstract要約: 信頼度は、再考を促す際に、答えを維持するための永続性の観点から測定される。
信頼は、基礎となるトークンレベルの確率によってのみ部分的に説明される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: There is a growing literature on reasoning by large language models (LLMs), but the discussion on the uncertainty in their responses is still lacking. Our aim is to assess the extent of confidence that LLMs have in their answers and how it correlates with accuracy. Confidence is measured (i) qualitatively in terms of persistence in keeping their answer when prompted to reconsider, and (ii) quantitatively in terms of self-reported confidence score. We investigate the performance of three LLMs -- GPT4o, GPT4-turbo and Mistral -- on two benchmark sets of questions on causal judgement and formal fallacies and a set of probability and statistical puzzles and paradoxes. Although the LLMs show significantly better performance than random guessing, there is a wide variability in their tendency to change their initial answers. There is a positive correlation between qualitative confidence and accuracy, but the overall accuracy for the second answer is often worse than for the first answer. There is a strong tendency to overstate the self-reported confidence score. Confidence is only partially explained by the underlying token-level probability. The material effects of prompting on qualitative confidence and the strong tendency for overconfidence indicate that current LLMs do not have any internally coherent sense of confidence.
- Abstract(参考訳): 大規模言語モデル(LLM)による推論に関する文献が増えているが、応答の不確実性に関する議論はまだ不十分である。
本研究の目的は, LLM の回答における信頼度と精度との関連性を評価することである。
信頼度を測定する
一 再考を促されたときの回答の持続性という点で質的に
(二)自己申告された信任点の量的評価。
GPT4o, GPT4-turbo, Mistralの3つのLCMの性能について, 因果判定と形式誤認に関する2つのベンチマークセットと, 確率および統計的パズルとパラドックスのセットについて検討した。
LLMは、ランダムな推測よりもかなり優れた性能を示すが、最初の答えを変える傾向には大きなばらつきがある。
質的信頼度と精度の間には正の相関関係があるが、第2の回答の全体的な精度は第1の回答よりも悪い場合が多い。
自己報告された信頼スコアを誇張する傾向が強い。
信頼は、基礎となるトークンレベルの確率によってのみ部分的に説明される。
質的信頼と過信の強い傾向を刺激する物質的効果は、現在のLLMが内部的に一貫性のある信頼感を持っていないことを示している。
関連論文リスト
- Towards Fully Exploiting LLM Internal States to Enhance Knowledge Boundary Perception [58.62352010928591]
大きな言語モデル(LLM)は様々なタスクにまたがって優れたパフォーマンスを示すが、しばしば知識境界を正確に測定するのに苦労する。
本稿では,LLMの内部状態を有効利用して,効率性やリスクの観点から知識境界に対する認識を高める方法について検討する。
論文 参考訳(メタデータ) (2025-02-17T11:11:09Z) - Language Models Prefer What They Know: Relative Confidence Estimation via Confidence Preferences [62.52739672949452]
言語モデル(LM)は、ユーザーがアウトプットの誤りを検知し、必要であれば人間の専門家に延期するのに役立つ、信頼性の高い信頼推定を提供する必要がある。
本稿では,相対的信頼度推定法を提案する。そこでは,相互に質問をマッチングし,モデルに信頼度を相対的に判断するよう求める。
各質問を、他の質問に対する「プレイヤー」として扱い、モデルの選好を一致結果として扱うことで、モデルの信頼性選好を信頼スコアに変換するために、Elo評価やBradley-Terryのようなランクアグリゲーション手法を使うことができる。
論文 参考訳(メタデータ) (2025-02-03T07:43:27Z) - On Verbalized Confidence Scores for LLMs [25.160810008907397]
大規模言語モデル(LLM)の不確実性定量化は、その応答に対するより人間的な信頼を確立することができる。
この研究は、出力トークンの一部として信頼度スコアで不確実性を言語化するようLLM自身に求めることに重点を置いている。
我々は、異なるデータセット、モデル、およびプロンプトメソッドに関して、言語化された信頼度スコアの信頼性を評価する。
論文 参考訳(メタデータ) (2024-12-19T11:10:36Z) - Fact-Level Confidence Calibration and Self-Correction [64.40105513819272]
本稿では,事実レベルでの信頼度と妥当性の重み付けを校正するFact-Levelフレームワークを提案する。
また,信頼度の高い自己補正(textbfConFix$)も開発した。
論文 参考訳(メタデータ) (2024-11-20T14:15:18Z) - Learning to Route LLMs with Confidence Tokens [43.63392143501436]
大規模言語モデルが回答の信頼性を確実に示すことができる範囲について検討する。
本稿では,LLMの信頼性を確実に表現するための軽量トレーニング戦略であるSelf-REFを提案する。
信頼度を言語化したり、トークンの確率を調べるといった従来の手法と比較して、信頼度トークンは下流のルーティングや拒否学習タスクにおいて著しく改善されていることを実証的に示す。
論文 参考訳(メタデータ) (2024-10-17T07:28:18Z) - Factual Confidence of LLMs: on Reliability and Robustness of Current Estimators [6.403926452181712]
大規模言語モデル(LLM)は、その答えの事実において信頼できない傾向にある。
本稿では,事実信頼度の推定者の調査と実証的比較について述べる。
実験により, 訓練された隠れ状態プローブが最も信頼性の高い信頼度を推定できることが示唆された。
論文 参考訳(メタデータ) (2024-06-19T10:11:37Z) - Confidence Under the Hood: An Investigation into the Confidence-Probability Alignment in Large Language Models [14.5291643644017]
信頼性・確率アライメントの概念を紹介します。
モデルの内部と信頼感の一致を調査する。
分析したモデルのうち、OpenAIのGPT-4は信頼性と信頼性のアライメントが最強であった。
論文 参考訳(メタデータ) (2024-05-25T15:42:04Z) - When to Trust LLMs: Aligning Confidence with Response Quality [49.371218210305656]
我々はconfidence-Quality-ORDer保存アライメントアプローチ(CONQORD)を提案する。
品質報酬と秩序保存アライメント報酬機能を統合する。
実験により,CONQORDは信頼性と応答精度のアライメント性能を著しく向上することが示された。
論文 参考訳(メタデータ) (2024-04-26T09:42:46Z) - TrustScore: Reference-Free Evaluation of LLM Response Trustworthiness [58.721012475577716]
大規模言語モデル(LLM)は、様々な領域にまたがる印象的な能力を示しており、その実践的応用が急増している。
本稿では,行動整合性の概念に基づくフレームワークであるTrustScoreを紹介する。
論文 参考訳(メタデータ) (2024-02-19T21:12:14Z) - Reconfidencing LLMs from the Grouping Loss Perspective [56.801251926946485]
大規模言語モデル(LLM)は、自信のある音調で幻覚的な答えを生じさせる可能性がある。
近年の研究では、不確実性制御はキャリブレーションを超えて行わなければならないことが示されている。
そこで我々は,MistralとLLaMAの回答に対する信頼度を評価するために,知識ベースから導出した新しい評価データセットを構築した。
論文 参考訳(メタデータ) (2024-02-07T15:40:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。