PCA-Featured Transformer for Jamming Detection in 5G UAV Networks
- URL: http://arxiv.org/abs/2412.15312v1
- Date: Thu, 19 Dec 2024 16:13:04 GMT
- Title: PCA-Featured Transformer for Jamming Detection in 5G UAV Networks
- Authors: Joseanne Viana, Hamed Farkhari, Pedro Sebastiao, Victor P Gil Jimenez, Lester Ho,
- Abstract summary: Jamming attacks pose a threat to Unmanned Aerial Vehicle (UAV) wireless communication systems.
Current detection approaches struggle with sophisticated artificial intelligence (AI) jamming techniques.
We present a novel transformer-based deep learning framework for jamming detection.
- Score: 0.559239450391449
- License:
- Abstract: Jamming attacks pose a threat to Unmanned Aerial Vehicle (UAV) wireless communication systems, potentially disrupting essential services and compromising network reliability. Current detection approaches struggle with sophisticated artificial intelligence (AI) jamming techniques that adapt their patterns while existing machine learning solutions often require extensive feature engineering and fail to capture complex temporal dependencies in attack signatures. Furthermore, 5G networks using either Time Division Duplex (TDD) or Frequency Division Duplex (FDD) methods can face service degradation from intentional interference sources. To address these challenges, we present a novel transformer-based deep learning framework for jamming detection with Principal Component Analysis (PCA) added features. Our architecture leverages the transformer's self-attention mechanism to capture complex temporal dependencies and spatial correlations in wireless signal characteristics, enabling more robust jamming detection techniques. The U-shaped model incorporates a modified transformer encoder that processes signal features including received signal strength indicator (RSSI) and signal-to-noise ratio (SINR) measurements, alongside a specialized positional encoding scheme that accounts for the periodic nature of wireless signals. In addition, we propose a batch size scheduler and implement chunking techniques to optimize training convergence for time series data. These advancements contribute to achieving up to a ten times improvement in training speed within the advanced U-shaped encoder-decoder model introduced. Simulation results demonstrate that our approach achieves a detection accuracy of 90.33 \% in Line-of-Sight (LoS) and 84.35 % in non-Line-of-Sight (NLoS) and outperforms machine learning methods and existing deep learning solutions such as the XGBoost (XGB) classifier in approximately 4%.
Related papers
- DRL-based Dolph-Tschebyscheff Beamforming in Downlink Transmission for Mobile Users [52.9870460238443]
We propose a deep reinforcement learning-based blind beamforming technique using a learnable Dolph-Tschebyscheff antenna array.
Our simulation results show that the proposed method can support data rates very close to the best possible values.
arXiv Detail & Related papers (2025-02-03T11:50:43Z) - Enhanced Real-Time Threat Detection in 5G Networks: A Self-Attention RNN Autoencoder Approach for Spectral Intrusion Analysis [8.805162150763847]
This paper presents an enhanced experimental model that integrates a self-attention mechanism with a Recurrent Neural Network (RNN)-based autoencoder.
Our approach is grounded in time-series analysis, processes in-phase and quadrature (I/Q) samples to identify irregularities that could indicate potential jamming attacks.
The model's architecture, augmented with a self-attention layer, extends the capabilities of RNN autoencoders.
arXiv Detail & Related papers (2024-11-05T07:01:15Z) - DT-DDNN: A Physical Layer Security Attack Detector in 5G RF Domain for
CAVs [11.15939066175832]
jamming attacks pose substantial risks to the 5G network.
This work presents a novel deep learning-based technique for detecting jammers in CAV networks.
Results show that the proposed method achieves 96.4% detection rate in extra low jamming power.
arXiv Detail & Related papers (2024-03-05T04:29:31Z) - RIDE: Real-time Intrusion Detection via Explainable Machine Learning
Implemented in a Memristor Hardware Architecture [24.824596231020585]
We propose a packet-level network intrusion detection solution that makes use of Recurrent Autoencoders to integrate an arbitrary-length sequence of packets into a more compact joint feature embedding.
We show that our approach leads to an extremely efficient, real-time solution with high detection accuracy at the packet level.
arXiv Detail & Related papers (2023-11-27T17:30:19Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
Future communication networks must address the scarce spectrum to accommodate growth of heterogeneous wireless devices.
We exploit the potential of deep neural networks based multi-task learning framework to simultaneously learn modulation and signal classification tasks.
We provide a comprehensive heterogeneous wireless signals dataset for public use.
arXiv Detail & Related papers (2022-02-26T14:51:02Z) - Frequency-based Multi Task learning With Attention Mechanism for Fault
Detection In Power Systems [6.4332733596587115]
We introduce a novel deep learning-based approach for fault detection and test it on a real data set, namely, the Kaggle platform for a partial discharge detection task.
Our solution adopts a Long-Short Term Memory architecture with attention mechanism to extract time series features, and uses a 1D-Convolutional Neural Network structure to exploit frequency information of the signal for prediction.
arXiv Detail & Related papers (2020-09-15T02:01:47Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.