論文の概要: Pre-training Graph Neural Networks on Molecules by Using Subgraph-Conditioned Graph Information Bottleneck
- arxiv url: http://arxiv.org/abs/2412.15589v1
- Date: Fri, 20 Dec 2024 05:52:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:21:37.557282
- Title: Pre-training Graph Neural Networks on Molecules by Using Subgraph-Conditioned Graph Information Bottleneck
- Title(参考訳): グラフ情報ブースネックを用いた分子上のグラフニューラルネットワークの事前学習
- Authors: Van Thuy Hoang, O-Joun Lee,
- Abstract要約: 本研究の目的は、人間のアノテーションや事前知識を使わずに、分子上に事前学習されたグラフニューラルネットワーク(GNN)モデルを構築することである。
本稿では,GNNがコア部分グラフ(グラフコア)と重要な部分グラフを認識するための事前学習を行うための,S-CGIBと呼ばれる新しいサブグラフ条件グラフ情報ボトルネックを提案する。
- 参考スコア(独自算出の注目度): 2.137573128343838
- License:
- Abstract: This study aims to build a pre-trained Graph Neural Network (GNN) model on molecules without human annotations or prior knowledge. Although various attempts have been proposed to overcome limitations in acquiring labeled molecules, the previous pre-training methods still rely on semantic subgraphs, i.e., functional groups. Only focusing on the functional groups could overlook the graph-level distinctions. The key challenge to build a pre-trained GNN on molecules is how to (1) generate well-distinguished graph-level representations and (2) automatically discover the functional groups without prior knowledge. To solve it, we propose a novel Subgraph-conditioned Graph Information Bottleneck, named S-CGIB, for pre-training GNNs to recognize core subgraphs (graph cores) and significant subgraphs. The main idea is that the graph cores contain compressed and sufficient information that could generate well-distinguished graph-level representations and reconstruct the input graph conditioned on significant subgraphs across molecules under the S-CGIB principle. To discover significant subgraphs without prior knowledge about functional groups, we propose generating a set of functional group candidates, i.e., ego networks, and using an attention-based interaction between the graph core and the candidates. Despite being identified from self-supervised learning, our learned subgraphs match the real-world functional groups. Extensive experiments on molecule datasets across various domains demonstrate the superiority of S-CGIB.
- Abstract(参考訳): 本研究の目的は、人間のアノテーションや事前知識を使わずに、分子上に事前学習されたグラフニューラルネットワーク(GNN)モデルを構築することである。
ラベル付き分子の獲得の限界を克服する様々な試みが提案されているが、以前の事前学習法は依然として意味的な部分グラフ、すなわち官能基に依存していた。
関数型グループにのみ注目することは、グラフレベルの区別を見落としることができる。
分子上に事前学習したGNNを構築する上での鍵となる課題は、(1)よく区別されたグラフレベルの表現を生成する方法、(2)事前知識のない機能群を自動的に発見する方法である。
そこで本研究では,GNNがコア部分グラフ(グラフコア)と重要な部分グラフを事前学習するために,S-CGIBと呼ばれる新しいサブグラフ条件グラフ情報ボトルネックを提案する。
主な考え方は、グラフコアに圧縮された十分な情報が含まれており、十分に区別されたグラフレベルの表現を生成し、S-CGIB原理の下で分子間で有意な部分グラフで条件付けられた入力グラフを再構成できるということである。
機能的グループに関する事前知識のない重要なサブグラフを発見するために,機能的グループ候補,すなわちエゴネットワークの生成と,グラフコアと候補間の注目に基づくインタラクションを提案する。
自己教師型学習から特定されているにもかかわらず、学習したサブグラフは実世界の機能グループと一致する。
様々な領域にわたる分子データセットに関する大規模な実験は、S-CGIBの優位性を示している。
関連論文リスト
- Learning From Graph-Structured Data: Addressing Design Issues and Exploring Practical Applications in Graph Representation Learning [2.492884361833709]
グラフ表現学習とグラフニューラルネットワーク(GNN)の最近の進歩を概観する。
グラフ構造化データを扱うように設計されたGNNは、複雑な関係情報から洞察と予測を引き出すのに長けている。
我々の研究は、GNNの能力を掘り下げ、その基礎設計と現実の課題に対処するための応用について調べている。
論文 参考訳(メタデータ) (2024-11-09T19:10:33Z) - SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
グラフニューラルネットワーク(GNN)は、グラフやネットワークのような非ユークリッドデータ上での機械学習の分野に革命をもたらした。
本稿では,ノード表現をインジェクティブに更新する結合型グラフ畳み込み機構を提案する。
また,WL-SortPoolと呼ばれるグラフプーリングモジュールを設計し,重要なサブグラフパターンをディープラーニングで学習する。
論文 参考訳(メタデータ) (2024-04-21T13:11:59Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
グラフ畳み込みネットワーク(GCN)は、グラフベースのクラスタリングを改善する上で大きな可能性を秘めている。
モデルはGCNを適用するために初期グラフを事前に推定する。
一般的なデータクラスタリングには,Deep Contrastive Graph Learning (DCGL)モデルが提案されている。
論文 参考訳(メタデータ) (2024-02-25T07:03:37Z) - Self-supervised Learning and Graph Classification under Heterophily [4.358149865548289]
我々は,Metric(PGM)に基づく,事前学習型グラフニューラルネットワーク(GNN)のための新しい自己教師型戦略を提案する。
我々の戦略は、分子特性予測とタンパク質機能予測のための最先端性能を実現する。
論文 参考訳(メタデータ) (2023-06-14T12:32:38Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
グラフニューラルネットワーク(GNN)は、ノード機能を伝搬し、インタラクションを構築するためにメッセージパッシングパラダイムに依存している。
最近の研究は、異なるグラフ学習タスクはノード間の異なる範囲の相互作用を必要とすることを指摘している。
科学領域における2つの共通グラフ構築法、すなわち、emphK-nearest neighbor(KNN)グラフとemphfully-connected(FC)グラフについて検討する。
論文 参考訳(メタデータ) (2022-05-15T11:38:14Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Motif-based Graph Self-Supervised Learning forMolecular Property
Prediction [12.789013658551454]
グラフニューラルネットワーク(GNN)は、様々な分子生成および予測タスクにおいて顕著な成功を収めている。
既存のGNN用の自己教師付き事前トレーニングフレームワークのほとんどは、ノードレベルまたはグラフレベルのタスクのみに焦点を当てている。
GNNのための新しい自己教師型モチーフ生成フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-03T11:45:51Z) - Self-supervised Graph-level Representation Learning with Local and
Global Structure [71.45196938842608]
自己教師付き全グラフ表現学習のためのローカル・インスタンスとグローバル・セマンティック・ラーニング(GraphLoG)という統合フレームワークを提案する。
GraphLoGは、局所的な類似点の保存に加えて、グローバルなセマンティッククラスタをキャプチャする階層的なプロトタイプも導入している。
モデル学習のための効率的なオンライン予測最大化(EM)アルゴリズムがさらに開発された。
論文 参考訳(メタデータ) (2021-06-08T05:25:38Z) - Motif-Driven Contrastive Learning of Graph Representations [32.03481571304036]
しばしば発生するサブグラフパターンであるグラフモチーフを学習し、より良いサブグラフサンプリングを提案する。
ogbg-molhivデータセットをMICRO-Graphで事前トレーニングすることで、事前トレーニングされたGNNは平均性能を2.04%向上させる。
論文 参考訳(メタデータ) (2020-12-23T08:10:19Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
グラフデータの教師なし表現を学習するためのグラフコントラスト学習(GraphCL)フレームワークを提案する。
我々のフレームワークは、最先端の手法と比較して、類似またはより良い一般化可能性、転送可能性、堅牢性のグラフ表現を作成できることを示す。
論文 参考訳(メタデータ) (2020-10-22T20:13:43Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。