論文の概要: Self-Supervised Radiograph Anatomical Region Classification -- How Clean Is Your Real-World Data?
- arxiv url: http://arxiv.org/abs/2412.15967v1
- Date: Fri, 20 Dec 2024 15:07:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:21:49.175696
- Title: Self-Supervised Radiograph Anatomical Region Classification -- How Clean Is Your Real-World Data?
- Title(参考訳): 自己監督型ラジオグラフィー 解剖学的領域分類 - あなたの実際のデータはどの程度クリーンか?
- Authors: Simon Langer, Jessica Ritter, Rickmer Braren, Daniel Rueckert, Paul Hager,
- Abstract要約: 本研究は,48,434個の骨格X線撮影データから,14個の解剖学的領域のクラスを割り当てる自己教師手法の有効性を示した。
我々は,1つのモデルで96.6%,97.7%の線形評価精度をアンサンブルアプローチで達成した。
- 参考スコア(独自算出の注目度): 10.5757425746568
- License:
- Abstract: Modern deep learning-based clinical imaging workflows rely on accurate labels of the examined anatomical region. Knowing the anatomical region is required to select applicable downstream models and to effectively generate cohorts of high quality data for future medical and machine learning research efforts. However, this information may not be available in externally sourced data or generally contain data entry errors. To address this problem, we show the effectiveness of self-supervised methods such as SimCLR and BYOL as well as supervised contrastive deep learning methods in assigning one of 14 anatomical region classes in our in-house dataset of 48,434 skeletal radiographs. We achieve a strong linear evaluation accuracy of 96.6% with a single model and 97.7% using an ensemble approach. Furthermore, only a few labeled instances (1% of the training set) suffice to achieve an accuracy of 92.2%, enabling usage in low-label and thus low-resource scenarios. Our model can be used to correct data entry mistakes: a follow-up analysis of the test set errors of our best-performing single model by an expert radiologist identified 35% incorrect labels and 11% out-of-domain images. When accounted for, the radiograph anatomical region labelling performance increased -- without and with an ensemble, respectively -- to a theoretical accuracy of 98.0% and 98.8%.
- Abstract(参考訳): 最新のディープラーニングベースの臨床画像ワークフローは、検査された解剖学的領域の正確なラベルに依存している。
解剖学的領域を知るためには、適用可能な下流モデルを選択し、将来の医療・機械学習研究のために高品質なデータのコホートを効果的に生成する必要がある。
しかし、この情報は外部ソースのデータでは利用できないかもしれないし、一般的にデータ入力エラーを含んでいるかもしれない。
そこで本研究では,SimCLRやBYOLなどの自己教師型手法と,48,434個の骨格ラジオグラフィーの社内データセットに14の解剖学的領域のクラスを割り当てる教師型深層学習法の有効性を示す。
我々は,1つのモデルで96.6%,97.7%の線形評価精度をアンサンブルアプローチで達成した。
さらに、92.2%の精度を達成するためにラベル付きインスタンス(トレーニングセットの1%)はわずかであり、低ラベルおよび低リソースシナリオでの使用を可能にする。
我々のモデルは、データ入力ミスの修正に使用できる: 専門家の放射線学者が、最高のパフォーマンスのシングルモデルのテストセットエラーの追跡分析により、35%の誤ったラベルと11%のドメイン外画像が特定された。
解析すると、X線写真解剖学的領域のラベル付け性能は、それぞれ98.0%と98.8%の精度で向上した。
関連論文リスト
- Refining Tuberculosis Detection in CXR Imaging: Addressing Bias in Deep Neural Networks via Interpretability [1.9936075659851882]
実験データから完全な分類精度を得ることができたとしても,深層学習モデルの信頼性は限られていると論じる。
大規模プロキシタスクでディープニューラルネットワークを事前トレーニングし、MOON(Mixed objective Optimization Network)を使用することで、モデルとエキスパート間の決定基盤の整合性を改善することができることを示す。
論文 参考訳(メタデータ) (2024-07-19T06:41:31Z) - Early prediction of onset of sepsis in Clinical Setting [0.8471078314535754]
教師付き学習手法が採用され、列車データセットの80%をXGBoostモデルでトレーニングした。
モデルは、トレーニング期間中に全く見えなかった予測データに基づいて検証された。
このモデルでは、試験データでは0.494点、予測データでは0.378点の正常化ユーティリティスコアが得られた。
論文 参考訳(メタデータ) (2024-02-05T19:58:40Z) - Generative models improve fairness of medical classifiers under
distribution shifts [49.10233060774818]
データから現実的な拡張を自動的に学習することは、生成モデルを用いてラベル効率の良い方法で可能であることを示す。
これらの学習の強化は、モデルをより堅牢で統計的に公平に配布できることを示した。
論文 参考訳(メタデータ) (2023-04-18T18:15:38Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
本稿では,正対損失緩和とランダムな文サンプリングを含む新たな微調整手法を提案する。
提案手法は,胸部X線データセットと3つの事前訓練モデル間のゼロショット病理分類を一貫して改善する。
論文 参考訳(メタデータ) (2022-12-14T06:04:18Z) - Learning to diagnose common thorax diseases on chest radiographs from
radiology reports in Vietnamese [0.33598755777055367]
ベトナムの放射線学報告から情報を抽出し,胸部X線(CXR)画像の正確なラベルを提供するデータ収集・アノテーションパイプラインを提案する。
このことは、ベトナムの放射線学者や臨床医が、国によって異なる可能性のある内因性診断カテゴリと密接に一致したデータに注釈を付けることで、ベトナムの放射線技師や臨床医に利益をもたらす可能性がある。
論文 参考訳(メタデータ) (2022-09-11T06:06:03Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - A Real-World Demonstration of Machine Learning Generalizability:
Intracranial Hemorrhage Detection on Head CT [5.517017976008718]
本研究の目的は,医療画像においてMLモデルの一般化性が達成可能であることを示すことである。
MLモデルは、RSNA頭蓋内出血CTデータセットから21,784個のスキャンを用いて訓練された。
外的検証では、AUCは95.4%、感度は91.3%、特異度は94.1%であった。
論文 参考訳(メタデータ) (2021-02-09T15:05:48Z) - Chest x-ray automated triage: a semiologic approach designed for
clinical implementation, exploiting different types of labels through a
combination of four Deep Learning architectures [83.48996461770017]
本研究では,異なる畳み込みアーキテクチャの後期融合に基づく深層学習手法を提案する。
公開胸部x線画像と機関アーカイブを組み合わせたトレーニングデータセットを4つ構築した。
4つの異なるディープラーニングアーキテクチャをトレーニングし、それらのアウトプットとレイトフュージョン戦略を組み合わせることで、統一されたツールを得ました。
論文 参考訳(メタデータ) (2020-12-23T14:38:35Z) - A Multi-resolution Model for Histopathology Image Classification and
Localization with Multiple Instance Learning [9.36505887990307]
精度マップを利用して不審な地域を検知し,詳細なグレード予測を行うマルチレゾリューション・マルチインスタンス学習モデルを提案する。
このモデルは、830人の患者から20,229のスライドを含む大規模前立腺生検データセットに基づいて開発された。
このモデルは92.7%の精度、良性、低等級(中等級)、高等級(中等級)のCohen's Kappa、98.2%の受信機動作特性曲線(AUROC)、平均精度(AP)97.4%の予測を達成した。
論文 参考訳(メタデータ) (2020-11-05T06:42:39Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。