Choose Your Explanation: A Comparison of SHAP and GradCAM in Human Activity Recognition
- URL: http://arxiv.org/abs/2412.16003v1
- Date: Fri, 20 Dec 2024 15:53:25 GMT
- Title: Choose Your Explanation: A Comparison of SHAP and GradCAM in Human Activity Recognition
- Authors: Felix Tempel, Daniel Groos, Espen Alexander F. Ihlen, Lars Adde, Inga Strümke,
- Abstract summary: This study compares Shapley Additive Explanations (SHAP) and Gradient-weighted Class Activation Mapping (GradCAM)
We quantitatively and quantitatively compare these methods, focusing on feature importance ranking, interpretability, and model sensitivity through perturbation experiments.
Our research demonstrates how SHAP and GradCAM could complement each other to provide more interpretable and actionable model explanations.
- Score: 0.13194391758295113
- License:
- Abstract: Explaining machine learning (ML) models using eXplainable AI (XAI) techniques has become essential to make them more transparent and trustworthy. This is especially important in high-stakes domains like healthcare, where understanding model decisions is critical to ensure ethical, sound, and trustworthy outcome predictions. However, users are often confused about which explanability method to choose for their specific use case. We present a comparative analysis of widely used explainability methods, Shapley Additive Explanations (SHAP) and Gradient-weighted Class Activation Mapping (GradCAM), within the domain of human activity recognition (HAR) utilizing graph convolutional networks (GCNs). By evaluating these methods on skeleton-based data from two real-world datasets, including a healthcare-critical cerebral palsy (CP) case, this study provides vital insights into both approaches' strengths, limitations, and differences, offering a roadmap for selecting the most appropriate explanation method based on specific models and applications. We quantitatively and quantitatively compare these methods, focusing on feature importance ranking, interpretability, and model sensitivity through perturbation experiments. While SHAP provides detailed input feature attribution, GradCAM delivers faster, spatially oriented explanations, making both methods complementary depending on the application's requirements. Given the importance of XAI in enhancing trust and transparency in ML models, particularly in sensitive environments like healthcare, our research demonstrates how SHAP and GradCAM could complement each other to provide more interpretable and actionable model explanations.
Related papers
- Explaining the Unexplained: Revealing Hidden Correlations for Better Interpretability [1.8274323268621635]
Real Explainer (RealExp) is an interpretability method that decouples the Shapley Value into individual feature importance and feature correlation importance.
RealExp enhances interpretability by precisely quantifying both individual feature contributions and their interactions.
arXiv Detail & Related papers (2024-12-02T10:50:50Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - A Perspective on Explainable Artificial Intelligence Methods: SHAP and LIME [4.328967621024592]
We propose a framework for interpretation of two widely used XAI methods.
We discuss their outcomes in terms of model-dependency and in the presence of collinearity.
The results indicate that SHAP and LIME are highly affected by the adopted ML model and feature collinearity, raising a note of caution on their usage and interpretation.
arXiv Detail & Related papers (2023-05-03T10:04:46Z) - A Concept and Argumentation based Interpretable Model in High Risk
Domains [9.209499864585688]
Interpretability has become an essential topic for artificial intelligence in high-risk domains such as healthcare, bank and security.
We propose a concept and argumentation based model (CAM) that includes a novel concept mining method to obtain human understandable concepts.
CAM provides decisions that are based on human-level knowledge and the reasoning process is intrinsically interpretable.
arXiv Detail & Related papers (2022-08-17T08:29:02Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
Explainable Artificial Intelligence (XAI) is an emerging research field bringing transparency to highly complex machine learning (ML) models.
This paper offers a comprehensive overview over techniques that apply XAI practically for improving various properties of ML models.
We show empirically through experiments on toy and realistic settings how explanations can help improve properties such as model generalization ability or reasoning.
arXiv Detail & Related papers (2022-03-15T15:44:28Z) - Explanation of Machine Learning Models Using Shapley Additive
Explanation and Application for Real Data in Hospital [0.11470070927586014]
We propose two novel techniques for better interpretability of machine learning models.
We show how the A/G ratio works as an important prognostic factor for cerebral infarction using our hospital data and proposed techniques.
arXiv Detail & Related papers (2021-12-21T10:08:31Z) - Evaluating Explainable Artificial Intelligence Methods for Multi-label
Deep Learning Classification Tasks in Remote Sensing [0.0]
We develop deep learning models with state-of-the-art performance in benchmark datasets.
Ten XAI methods were employed towards understanding and interpreting models' predictions.
Occlusion, Grad-CAM and Lime were the most interpretable and reliable XAI methods.
arXiv Detail & Related papers (2021-04-03T11:13:14Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.