GNN-Transformer Cooperative Architecture for Trustworthy Graph Contrastive Learning
- URL: http://arxiv.org/abs/2412.16218v3
- Date: Tue, 28 Jan 2025 09:48:54 GMT
- Title: GNN-Transformer Cooperative Architecture for Trustworthy Graph Contrastive Learning
- Authors: Jianqing Liang, Xinkai Wei, Min Chen, Zhiqiang Wang, Jiye Liang,
- Abstract summary: Graph contrastive learning (GCL) has become a hot topic in the field of graph representation learning.
We propose GNN-Transformer Cooperative Architecture for Trustworthy Graph Contrastive Learning.
- Score: 20.54767504966887
- License:
- Abstract: Graph contrastive learning (GCL) has become a hot topic in the field of graph representation learning. In contrast to traditional supervised learning relying on a large number of labels, GCL exploits augmentation strategies to generate multiple views and positive/negative pairs, both of which greatly influence the performance. Unfortunately, commonly used random augmentations may disturb the underlying semantics of graphs. Moreover, traditional GNNs, a type of widely employed encoders in GCL, are inevitably confronted with over-smoothing and over-squashing problems. To address these issues, we propose GNN-Transformer Cooperative Architecture for Trustworthy Graph Contrastive Learning (GTCA), which inherits the advantages of both GNN and Transformer, incorporating graph topology to obtain comprehensive graph representations. Theoretical analysis verifies the trustworthiness of the proposed method. Extensive experiments on benchmark datasets demonstrate state-of-the-art empirical performance.
Related papers
- Dual-Optimized Adaptive Graph Reconstruction for Multi-View Graph Clustering [19.419832637206138]
We propose a novel multi-view graph clustering method based on dual-optimized adaptive graph reconstruction, named DOAGC.
It mainly aims to reconstruct the graph structure adapted to traditional GNNs to deal with heterophilous graph issues while maintaining the advantages of traditional GNNs.
arXiv Detail & Related papers (2024-10-30T12:50:21Z) - GRE^2-MDCL: Graph Representation Embedding Enhanced via Multidimensional Contrastive Learning [0.0]
Graph representation learning has emerged as a powerful tool for preserving graph topology when mapping nodes to vector representations.
Current graph neural network models face the challenge of requiring extensive labeled data.
We propose Graph Representation Embedding Enhanced via Multidimensional Contrastive Learning.
arXiv Detail & Related papers (2024-09-12T03:09:05Z) - Your Graph Recommender is Provably a Single-view Graph Contrastive Learning [20.97898501484718]
Graph recommender (GR) is a type of graph neural network (GNNs) encoder that is customized for extracting information from the user-item interaction graph.
Graph contrastive learning (GCL) is a popular research direction that aims to learn, often unsupervised, GNNs with certain contrastive objectives.
Despite the intersection of GR and GCL research, theoretical understanding of the relationship between the two fields is surprisingly sparse.
arXiv Detail & Related papers (2024-07-25T02:53:11Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
Graph Neural Networks (GNNs) show promising results for graph tasks.
Existing GNNs' generalization ability will degrade when there exist distribution shifts between testing and training graph data.
We propose a novel nonlinear graph decorrelation method, which can substantially improve the out-of-distribution generalization ability.
arXiv Detail & Related papers (2023-12-19T12:25:10Z) - Graph Contrastive Learning with Generative Adversarial Network [35.564028359355596]
Graph generative adversarial networks (GANs) learn the distribution of views for Graph Contrastive Learning (GCL)
We present GACN, a novel Generative Adversarial Contrastive learning Network for graph representation learning.
We show that GACN is able to generate high-quality augmented views for GCL and is superior to twelve state-of-the-art baseline methods.
arXiv Detail & Related papers (2023-08-01T13:28:24Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
We introduce a simple yet effective contrastive model named Localized Graph Contrastive Learning (Local-GCL)
In spite of its simplicity, Local-GCL achieves quite competitive performance in self-supervised node representation learning tasks on graphs with various scales and properties.
arXiv Detail & Related papers (2022-12-08T23:36:00Z) - Uncovering the Structural Fairness in Graph Contrastive Learning [87.65091052291544]
Graph contrastive learning (GCL) has emerged as a promising self-supervised approach for learning node representations.
We show that representations obtained by GCL methods are already fairer to degree bias than those learned by GCN.
We devise a novel graph augmentation method, called GRAph contrastive learning for DEgree bias (GRADE), which applies different strategies to low- and high-degree nodes.
arXiv Detail & Related papers (2022-10-06T15:58:25Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
Graph Contrastive Learning (GCL) has shown promising performance in graph representation learning (GRL) without the supervision of manual annotations.
This paper proposes an effective graph complementary contrastive learning approach named GraphCoCo to tackle the above issue.
arXiv Detail & Related papers (2022-03-24T02:58:36Z) - Training Free Graph Neural Networks for Graph Matching [103.45755859119035]
TFGM is a framework to boost the performance of Graph Neural Networks (GNNs) based graph matching without training.
Applying TFGM on various GNNs shows promising improvements over baselines.
arXiv Detail & Related papers (2022-01-14T09:04:46Z) - Adversarial Graph Augmentation to Improve Graph Contrastive Learning [21.54343383921459]
We propose a novel principle, termed adversarial-GCL (AD-GCL), which enables GNNs to avoid capturing redundant information during the training.
We experimentally validate AD-GCL by comparing with the state-of-the-art GCL methods and achieve performance gains of up-to $14%$ in unsupervised, $6%$ in transfer, and $3%$ in semi-supervised learning settings.
arXiv Detail & Related papers (2021-06-10T15:34:26Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
We propose a graph contrastive learning (GraphCL) framework for learning unsupervised representations of graph data.
We show that our framework can produce graph representations of similar or better generalizability, transferrability, and robustness compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-10-22T20:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.