論文の概要: LEARN: A Unified Framework for Multi-Task Domain Adapt Few-Shot Learning
- arxiv url: http://arxiv.org/abs/2412.16275v1
- Date: Fri, 20 Dec 2024 17:16:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:01:37.355580
- Title: LEARN: A Unified Framework for Multi-Task Domain Adapt Few-Shot Learning
- Title(参考訳): LEARN: 複数タスクドメインに対応するFew-Shot学習のための統一フレームワーク
- Authors: Bharadwaj Ravichandran, Alexander Lynch, Sarah Brockman, Brandon RichardWebster, Dawei Du, Anthony Hoogs, Christopher Funk,
- Abstract要約: 3つの異なるタスクにまたがる数ショットの学習設定にドメイン適応を組み合わせた最初の統合フレームワークを提案する。
私たちのフレームワークは高度にモジュール化されており、ドメイン適応を伴わずに、数ショットの学習をサポートすることができます。
- 参考スコア(独自算出の注目度): 49.34200199155883
- License:
- Abstract: Both few-shot learning and domain adaptation sub-fields in Computer Vision have seen significant recent progress in terms of the availability of state-of-the-art algorithms and datasets. Frameworks have been developed for each sub-field; however, building a common system or framework that combines both is something that has not been explored. As part of our research, we present the first unified framework that combines domain adaptation for the few-shot learning setting across 3 different tasks - image classification, object detection and video classification. Our framework is highly modular with the capability to support few-shot learning with/without the inclusion of domain adaptation depending on the algorithm. Furthermore, the most important configurable feature of our framework is the on-the-fly setup for incremental $n$-shot tasks with the optional capability to configure the system to scale to a traditional many-shot task. With more focus on Self-Supervised Learning (SSL) for current few-shot learning approaches, our system also supports multiple SSL pre-training configurations. To test our framework's capabilities, we provide benchmarks on a wide range of algorithms and datasets across different task and problem settings. The code is open source has been made publicly available here: https://gitlab.kitware.com/darpa_learn/learn
- Abstract(参考訳): 数ショットの学習と、コンピュータビジョンのドメイン適応サブフィールドの両方が、最先端のアルゴリズムとデータセットの可用性の観点から、最近の顕著な進歩を見せている。
各サブフィールド向けにフレームワークが開発されたが、両方を組み合わせた共通システムやフレームワークの構築はまだ検討されていない。
本研究の一環として、画像分類、オブジェクト検出、ビデオ分類という3つの異なるタスクにまたがる、数ショットの学習環境にドメイン適応を組み込んだ最初の統合フレームワークを提案する。
我々のフレームワークは高度にモジュール化されており、アルゴリズムによるドメイン適応を伴わずに、数ショットの学習をサポートすることができる。
さらに、我々のフレームワークで最も重要な設定可能な機能は、従来のマルチショットタスクにスケールするシステムをオプションで設定できるインクリメンタル$n$-shotタスクのオンザフライ設定である。
現在の数ショットの学習アプローチでは、自己監視学習(SSL)にもっと重点を置いているため、システムでは、複数のSSL事前トレーニング設定もサポートしています。
フレームワークの機能をテストするために、さまざまなタスクや問題設定にまたがる幅広いアルゴリズムとデータセットのベンチマークを提供しています。
コードはオープンソースで、https://gitlab.kitware.com/darpa_learn/learn.comで公開されている。
関連論文リスト
- EMPL: A novel Efficient Meta Prompt Learning Framework for Few-shot Unsupervised Domain Adaptation [22.586094394391747]
本稿では,FS-UDAのためのメタプロンプト学習フレームワークを提案する。
このフレームワークでは、事前訓練されたCLIPモデルを機能学習ベースモデルとして使用しています。
5-way 1-shotでは少なくとも15.4%,5-way 5-shotでは8.7%の大幅な改善が得られた。
論文 参考訳(メタデータ) (2024-07-04T17:13:06Z) - A Unified Transformer Framework for Group-based Segmentation:
Co-Segmentation, Co-Saliency Detection and Video Salient Object Detection [59.21990697929617]
人間は、ダイナミックな世界に住んでいるので、画像のグループやビデオのフレームから学ぶことによってオブジェクトをマイニングする傾向があります。
従来のアプローチでは、類似したタスクで異なるネットワークを個別に設計するが、互いに適用するのは困難である。
UFO(UnifiedObject Framework for Co-Object Framework)という,これらの問題に対処するための統一フレームワークを導入する。
論文 参考訳(メタデータ) (2022-03-09T13:35:19Z) - MFNet: Multi-class Few-shot Segmentation Network with Pixel-wise Metric
Learning [34.059257121606336]
この研究は、まだほとんど探索されていない分野である少数ショットセマンティックセマンティックセグメンテーションに焦点を当てている。
まず,マルチウェイ符号化とデコードアーキテクチャを提案する。このアーキテクチャは,マルチスケールクエリ情報とマルチクラスサポート情報を1つのクエリ支援埋め込みに効果的に融合する。
標準ベンチマーク PASCAL-5i と COCO-20i による実験により, 数発のセグメンテーションにおいて, 本手法の利点が明らかに示された。
論文 参考訳(メタデータ) (2021-10-30T11:37:36Z) - Bayesian Embeddings for Few-Shot Open World Recognition [60.39866770427436]
埋め込みベースの数ショット学習アルゴリズムをオープンワールド認識設定に拡張する。
当社のフレームワークは,MiniImageNetとTieredImageNetによる数ショット学習データセットのオープンワールド拡張をベンチマークする。
論文 参考訳(メタデータ) (2021-07-29T00:38:47Z) - Efficient Retrieval Optimized Multi-task Learning [16.189136169520424]
本稿では,自己指導型タスク,知識検索,抽出質問応答を共同で訓練するための新しい検索最適化マルチタスク(ROM)フレームワークを提案する。
我々のROMアプローチは、複数のタスクに効率的にスケーリングできる統一的で一般化可能なフレームワークを提供する。
当社のフレームワークでは,近年のQAメソッドよりも同等あるいは優れたパフォーマンスを実現していますが,パラメータの数を大幅に削減しています。
論文 参考訳(メタデータ) (2021-04-20T17:16:34Z) - Distribution Alignment: A Unified Framework for Long-tail Visual
Recognition [52.36728157779307]
長尾視覚認識のための分散アライメント戦略を提案する。
次に,二段階学習における一般化された再重み付け法を導入して,事前のクラスバランスをとる。
提案手法は, 4つの認識タスクすべてにおいて, 単純で統一されたフレームワークを用いて最先端の結果を得る。
論文 参考訳(メタデータ) (2021-03-30T14:09:53Z) - Attentive Feature Reuse for Multi Task Meta learning [17.8055398673228]
複数のタスクの同時学習のための新しいアルゴリズムを開発した。
本稿では,タスク毎に動的にネットワークを専門化するためのアテンション機構を提案する。
提案手法は,従来は目に見えなかった新しい環境における性能を向上させる。
論文 参考訳(メタデータ) (2020-06-12T19:33:11Z) - MTL-NAS: Task-Agnostic Neural Architecture Search towards
General-Purpose Multi-Task Learning [71.90902837008278]
汎用マルチタスク学習(GP-MTL)にニューラルアーキテクチャサーチ(NAS)を導入することを提案する。
異なるタスクの組み合わせに対応するため、GP-MTLネットワークを単一タスクのバックボーンに分割する。
また,探索されたアーキテクチャ間の性能ギャップを埋める単一ショット勾配に基づく探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-03-31T09:49:14Z) - Adversarial Continual Learning [99.56738010842301]
本稿では,タスク不変およびタスク特化機能に対する不整合表現を学習するハイブリッド連続学習フレームワークを提案する。
本モデルでは,タスク固有のスキルの忘れを防止するためにアーキテクチャの成長と,共有スキルを維持するための経験的リプレイアプローチを組み合わせる。
論文 参考訳(メタデータ) (2020-03-21T02:08:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。