論文の概要: Overview of the First Workshop on Language Models for Low-Resource Languages (LoResLM 2025)
- arxiv url: http://arxiv.org/abs/2412.16365v1
- Date: Fri, 20 Dec 2024 21:55:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:01:05.761541
- Title: Overview of the First Workshop on Language Models for Low-Resource Languages (LoResLM 2025)
- Title(参考訳): ローソース言語のための言語モデルに関する第1回ワークショップ(LoResLM 2025)の概要
- Authors: Hansi Hettiarachchi, Tharindu Ranasinghe, Paul Rayson, Ruslan Mitkov, Mohamed Gaber, Damith Premasiri, Fiona Anting Tan, Lasitha Uyangodage,
- Abstract要約: LoResLM 2025は、アラブ首長国連邦アブダビで開催された第31回計算言語に関する国際会議(COING 2025)と共同で開催された。
LoResLM 2025は自然言語処理(NLP)コミュニティから注目され、52件の論文から35件の論文が受理された。
- 参考スコア(独自算出の注目度): 8.529133508189737
- License:
- Abstract: The first Workshop on Language Models for Low-Resource Languages (LoResLM 2025) was held in conjunction with the 31st International Conference on Computational Linguistics (COLING 2025) in Abu Dhabi, United Arab Emirates. This workshop mainly aimed to provide a forum for researchers to share and discuss their ongoing work on language models (LMs) focusing on low-resource languages, following the recent advancements in neural language models and their linguistic biases towards high-resource languages. LoResLM 2025 attracted notable interest from the natural language processing (NLP) community, resulting in 35 accepted papers from 52 submissions. These contributions cover a broad range of low-resource languages from eight language families and 13 diverse research areas, paving the way for future possibilities and promoting linguistic inclusivity in NLP.
- Abstract(参考訳): ローリソース言語のための言語モデルに関する第1回ワークショップ (LoResLM 2025) は、アラブ首長国連邦アブダビで開催された第31回計算言語に関する国際会議 (COLING 2025) と共同で開催された。
このワークショップは主に、ニューラルネットワークモデルの最近の進歩と高リソース言語への言語バイアスに続き、低リソース言語に焦点を当てた言語モデル(LM)について、研究者が現在進行中の作業を共有するためのフォーラムを提供することを目的としている。
LoResLM 2025は自然言語処理(NLP)コミュニティから注目され、52件の論文から35件の論文が受理された。
これらの貢献は、8つの言語ファミリーと13の多様な研究領域からの幅広い低リソース言語をカバーし、将来の可能性への道を開き、NLPにおける言語的傾向を促進する。
関連論文リスト
- Multilingual Large Language Model: A Survey of Resources, Taxonomy and Frontiers [81.47046536073682]
本稿では,MLLM(Multilingual Large Language Model)文学における最近の進歩と新たなトレンドを要約する一貫した視点を提示する。
私たちの研究がコミュニティに迅速なアクセスを提供し、MLLMにおける画期的な研究を促進することを願っています。
論文 参考訳(メタデータ) (2024-04-07T11:52:44Z) - ArabicMMLU: Assessing Massive Multitask Language Understanding in Arabic [51.922112625469836]
アラビア語における最初のマルチタスク言語理解ベンチマークである、データセット名を提案する。
我々のデータは、現代標準アラビア語(MSA)における40のタスクと14,575のマルチチョイス質問で構成されており、地域の母語話者と協調して慎重に構築されている。
35モデルについて評価した結果,特にオープンソースモデルにおいて,改善の余地がかなり高いことが判明した。
論文 参考訳(メタデータ) (2024-02-20T09:07:41Z) - Multilingual Word Embeddings for Low-Resource Languages using Anchors
and a Chain of Related Languages [54.832599498774464]
我々は,言語連鎖に基づく新しいアプローチにより,多言語単語埋め込み(MWE)を構築することを提案する。
リソースの豊富なソースから始めて、ターゲットに到達するまで各言語をチェーンに順次追加することで、MWEを一度に1つの言語で構築します。
本手法は,4つの低リソース(5Mトークン)と4つの中程度の低リソース(50M)ターゲット言語を含む4つの言語ファミリーを対象としたバイリンガルレキシコン誘導法について検討した。
論文 参考訳(メタデータ) (2023-11-21T09:59:29Z) - Conversations in Galician: a Large Language Model for an
Underrepresented Language [2.433983268807517]
本稿では,ガリシア語に対する自然言語処理(NLP)を強化するために設計された2つの新しい資源を紹介する。
52,000の指示と実演を含むアルパカデータセットのガリシア適応について述べる。
データセットユーティリティのデモとして、元々モデルでサポートされていない言語であるGalicianで、LLaMA-7Bの理解と応答を微調整した。
論文 参考訳(メタデータ) (2023-11-07T08:52:28Z) - Findings of the 2023 ML-SUPERB Challenge: Pre-Training and Evaluation
over More Languages and Beyond [89.54151859266202]
2023年のMultilingual Speech Universal Performance Benchmark (ML-SUPERB) Challengeは、宣言されたSUPERBフレームワークに拡張される。
この挑戦は12のモデル提出と54の言語コーパスを集め、154の言語を含む包括的なベンチマークをもたらした。
この結果は、単にスケーリングモデルが多言語音声タスクにおける決定的な解決策ではないことを示唆している。
論文 参考訳(メタデータ) (2023-10-09T08:30:01Z) - BenLLMEval: A Comprehensive Evaluation into the Potentials and Pitfalls of Large Language Models on Bengali NLP [17.362068473064717]
大規模言語モデル(LLM)は、NLPにおいて最も重要なブレークスルーの1つである。
本稿では,ベンガル語での性能をベンチマークするために,LLMを総合的に評価するBenLLM-Evalを紹介する。
実験の結果、ベンガルのNLPタスクではゼロショットLLMは、現在のSOTA微調整モデルよりも性能が向上することが示された。
論文 参考訳(メタデータ) (2023-09-22T20:29:34Z) - A Survey of Corpora for Germanic Low-Resource Languages and Dialects [18.210880703295253]
この研究は低リソース言語、特に非標準の低リソース言語に焦点を当てている。
研究を促進するために,80以上のコーパスの概要を公開している。
論文 参考訳(メタデータ) (2023-04-19T16:45:16Z) - Including Signed Languages in Natural Language Processing [48.62744923724317]
署名された言語は、聴覚障害者や難聴者のコミュニケーションの主な手段です。
このポジショニングペーパーは、NLPコミュニティに対して、社会的および科学的影響の高い研究領域として署名された言語を含めるよう求めている。
論文 参考訳(メタデータ) (2021-05-11T17:37:55Z) - Learning to Learn Morphological Inflection for Resource-Poor Languages [105.11499402984482]
本稿では,メタラーニング問題として資源不足言語に対する形態的インフレクション(補題を表象形にマッピングする)の課題を提案する。
それぞれの言語を個別のタスクとして扱うことで、高速ソース言語からのデータを使ってモデルパラメータの集合を学習する。
3つのファミリーから29のターゲット言語を対象とする2つのモデルアーキテクチャの実験により、提案手法がすべてのベースラインを上回ります。
論文 参考訳(メタデータ) (2020-04-28T05:13:17Z) - A Continuous Space Neural Language Model for Bengali Language [0.4799822253865053]
本稿では, 連続空間ニューラル言語モデル, より具体的にはASGD重量減少型LSTM言語モデル, およびベンガル語で効率的に学習する手法を提案する。
提案したアーキテクチャは、ベンガルの保持されたデータセットにおいて、推論の難易度を51.2まで低くすることで、それよりも優れている。
論文 参考訳(メタデータ) (2020-01-11T14:50:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。