論文の概要: A Continuous Space Neural Language Model for Bengali Language
- arxiv url: http://arxiv.org/abs/2001.05315v1
- Date: Sat, 11 Jan 2020 14:50:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-12 09:26:25.468707
- Title: A Continuous Space Neural Language Model for Bengali Language
- Title(参考訳): ベンガル語のための連続空間ニューラル言語モデル
- Authors: Hemayet Ahmed Chowdhury, Md. Azizul Haque Imon, Anisur Rahman, Aisha
Khatun, Md. Saiful Islam
- Abstract要約: 本稿では, 連続空間ニューラル言語モデル, より具体的にはASGD重量減少型LSTM言語モデル, およびベンガル語で効率的に学習する手法を提案する。
提案したアーキテクチャは、ベンガルの保持されたデータセットにおいて、推論の難易度を51.2まで低くすることで、それよりも優れている。
- 参考スコア(独自算出の注目度): 0.4799822253865053
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language models are generally employed to estimate the probability
distribution of various linguistic units, making them one of the fundamental
parts of natural language processing. Applications of language models include a
wide spectrum of tasks such as text summarization, translation and
classification. For a low resource language like Bengali, the research in this
area so far can be considered to be narrow at the very least, with some
traditional count based models being proposed. This paper attempts to address
the issue and proposes a continuous-space neural language model, or more
specifically an ASGD weight dropped LSTM language model, along with techniques
to efficiently train it for Bengali Language. The performance analysis with
some currently existing count based models illustrated in this paper also shows
that the proposed architecture outperforms its counterparts by achieving an
inference perplexity as low as 51.2 on the held out data set for Bengali.
- Abstract(参考訳): 言語モデルは一般に様々な言語単位の確率分布を推定するために用いられ、自然言語処理の基本的な部分の1つである。
言語モデルの応用には、テキストの要約、翻訳、分類といった幅広いタスクが含まれる。
bengaliのような低リソース言語の場合、これまでのこの領域の研究は少なくとも狭く、いくつかの伝統的なカウントベースモデルが提案されている。
本稿では,この問題に対処するために,連続空間型ニューラルネットワークモデルを提案する。具体的には,asgd重み下げlstm言語モデルと,ベンガル語用に効率的に学習する手法を提案する。
本論文で示す数式モデルの性能分析により,提案手法は,ベンガルの保持されたデータセット上で,51.2 未満の推論パープレキシティを達成することで,そのアーキテクチャよりも優れていることが示された。
関連論文リスト
- One Model is All You Need: ByT5-Sanskrit, a Unified Model for Sanskrit NLP Tasks [26.848664285007022]
ByT5-Sanskritは、形態的にリッチなサンスクリット言語を含むNLPアプリケーション向けに設計された。
外部の言語資源によってカバーされていないデータへのデプロイが容易で、より堅牢である。
提案手法は,他の形態学的にリッチな言語に対する補題化と依存関係解析のための新たなベストスコアが得られることを示す。
論文 参考訳(メタデータ) (2024-09-20T22:02:26Z) - Benchmarking Pre-trained Large Language Models' Potential Across Urdu NLP tasks [0.9786690381850356]
多言語データで事前訓練されたLarge Language Models (LLMs)は、自然言語処理の研究に革命をもたらした。
本研究では,15のUrduデータセットを用いて,14のタスクにまたがる顕著なLLMの詳細な検討を行った。
実験の結果、SOTAモデルはゼロショット学習を伴う全てのUrdu NLPタスクにおいて、エンコーダ-デコーダ事前訓練された言語モデルを上回ることがわかった。
論文 参考訳(メタデータ) (2024-05-24T11:30:37Z) - Evaluating Large Language Models on Controlled Generation Tasks [92.64781370921486]
本稿では,異なる粒度を持つ文計画ベンチマークを含む,様々なベンチマークを広範囲に分析する。
大規模言語モデルと最先端の微調整された小型モデルを比較した後、大規模言語モデルが後方に落ちたり、比較されたり、より小型モデルの能力を超えたりしたスペクトルを示す。
論文 参考訳(メタデータ) (2023-10-23T03:48:24Z) - Multilingual Text Classification for Dravidian Languages [4.264592074410622]
そこで我々はDravidian言語のための多言語テキスト分類フレームワークを提案する。
一方、フレームワークはLaBSE事前訓練モデルをベースモデルとして使用した。
一方,モデルが言語間の相関を十分に認識・活用できないという問題を考慮し,さらに言語固有の表現モジュールを提案する。
論文 参考訳(メタデータ) (2021-12-03T04:26:49Z) - Language Models are Few-shot Multilingual Learners [66.11011385895195]
我々は、非英語言語における多言語分類を行う際に、GPTモデルとT5モデルの多言語的スキルを評価する。
文脈としての英語の例を見ると、事前学習された言語モデルは、英語のテストサンプルだけでなく、英語以外のサンプルも予測できることが示されている。
論文 参考訳(メタデータ) (2021-09-16T03:08:22Z) - Towards Zero-shot Language Modeling [90.80124496312274]
人間の言語学習に誘導的に偏りを持つニューラルモデルを構築した。
類型的に多様な訓練言語のサンプルからこの分布を推測する。
我々は、保留言語に対する遠隔監視として、追加の言語固有の側情報を利用する。
論文 参考訳(メタデータ) (2021-08-06T23:49:18Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z) - Indic-Transformers: An Analysis of Transformer Language Models for
Indian Languages [0.8155575318208631]
Transformerアーキテクチャに基づく言語モデルは、幅広いNLPタスクにおいて最先端のパフォーマンスを達成した。
しかしながら、このパフォーマンスは通常、英語、フランス語、スペイン語、ドイツ語などの高リソース言語でテストされ、報告される。
一方、インドの言語はそのようなベンチマークでは表現されていない。
論文 参考訳(メタデータ) (2020-11-04T14:43:43Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z) - Parsing with Multilingual BERT, a Small Corpus, and a Small Treebank [46.626315158735615]
事前訓練された多言語文脈表現は大きな成功を収めてきたが、事前訓練されたデータの制限のため、すべての言語品種に等しく適用されない。
このことは、ラベル付き未ラベルデータがモノリンガルモデルを効果的に訓練するにはあまりに限られている、これらのモデルに馴染みのない言語多様体にとっての課題である。
本稿では,低リソース環境に多言語モデルを適用するために,言語固有の事前学習と語彙拡張の利用を提案する。
論文 参考訳(メタデータ) (2020-09-29T16:12:52Z) - XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning [68.57658225995966]
XCOPA (Cross-lingual Choice of Plausible Alternatives) は11言語における因果コモンセンス推論のための多言語データセットである。
提案手法は,翻訳に基づく転送と比較して,現在の手法の性能が低下していることを明らかにする。
論文 参考訳(メタデータ) (2020-05-01T12:22:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。