論文の概要: Automated Hit-frame Detection for Badminton Match Analysis
- arxiv url: http://arxiv.org/abs/2307.16000v2
- Date: Wed, 2 Aug 2023 13:17:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-03 10:20:55.037968
- Title: Automated Hit-frame Detection for Badminton Match Analysis
- Title(参考訳): バドミントンマッチ解析のための自動ヒットフレーム検出
- Authors: Yu-Hang Chien, Fang Yu
- Abstract要約: 本研究では,最新の深層学習技術を用いて,マッチビデオからヒットフレームを自動的に検出し,バドミントンにおけるスポーツ分析の進歩を目指す。
ヒットフレームに含まれるデータは、その後プレイヤーのストロークやコート上での動きを合成したり、トレーニングタスクの分析や競争戦略などの下流のアプリケーションに利用することができる。
本研究では,映像トリミングにおけるショットアングル認識の精度99%,シャトルコック飛行方向予測におけるキーポイントシーケンスの適用精度92%以上を達成し,ラリーワイドビデオトリミングとヒットフレーム検出の評価結果を報告した。
- 参考スコア(独自算出の注目度): 1.3300217947936062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sports professionals constantly under pressure to perform at the highest
level can benefit from sports analysis, which allows coaches and players to
reduce manual efforts and systematically evaluate their performance using
automated tools. This research aims to advance sports analysis in badminton,
systematically detecting hit-frames automatically from match videos using
modern deep learning techniques. The data included in hit-frames can
subsequently be utilized to synthesize players' strokes and on-court movement,
as well as for other downstream applications such as analyzing training tasks
and competition strategy. The proposed approach in this study comprises several
automated procedures like rally-wise video trimming, player and court keypoints
detection, shuttlecock flying direction prediction, and hit-frame detection. In
the study, we achieved 99% accuracy on shot angle recognition for video
trimming, over 92% accuracy for applying player keypoints sequences on
shuttlecock flying direction prediction, and reported the evaluation results of
rally-wise video trimming and hit-frame detection.
- Abstract(参考訳): スポーツ専門家は、常に最高水準での演奏を迫られているため、コーチや選手が手作業の労力を減らし、自動ツールを使用してパフォーマンスを体系的に評価できるスポーツ分析の恩恵を受けることができる。
本研究では,最新の深層学習技術を用いて,マッチビデオからヒットフレームを自動的に検出し,バドミントンにおけるスポーツ分析の進歩を目指す。
ヒットフレームに含まれるデータは、後にプレイヤーのストロークやオンコートの動きを合成したり、トレーニングタスクの分析や競争戦略などの下流のアプリケーションにも利用できる。
本研究で提案するアプローチは,ラリーワイズビデオトリミング,プレーヤとコートキーポイント検出,シャトルコック飛行方向予測,ヒットフレーム検出など,いくつかの自動手順を含む。
本研究では,映像トリミングにおけるショットアングル認識の精度99%,シャトルコック飛行方向予測におけるキーポイントシーケンスの適用精度92%以上を達成し,ラリーワイドビデオトリミングとヒットフレーム検出の評価結果を報告する。
関連論文リスト
- Deep learning for action spotting in association football videos [64.10841325879996]
SoccerNetイニシアチブは毎年の課題を組織し、世界中の参加者が最先端のパフォーマンスを達成するために競う。
本稿では,スポーツにおけるアクションスポッティングの歴史を,2018年の課題の創出から,現在の研究・スポーツ産業における役割まで遡る。
論文 参考訳(メタデータ) (2024-10-02T07:56:15Z) - AI coach for badminton [0.0]
本研究では,バドミントンマッチの映像を識別し,プレイヤーの運動学と生体力学の知見を抽出する。
この研究は、姿勢、技術、筋肉の向きの改善を示唆する予測モデルを導出することを目的としている。
これらの勧告は、誤ったテクニックを緩和し、関節疲労のリスクを低減し、全体的なパフォーマンスを向上させるように設計されている。
論文 参考訳(メタデータ) (2024-03-13T20:51:21Z) - A Badminton Recognition and Tracking System Based on Context
Multi-feature Fusion [6.068573093901329]
2つのトラジェクトリクリップトラッカーは、ボールの正しいトラジェクトリをキャプチャするための異なるルールに基づいて設計されている。
粗粒から細粒への2ラウンドの検出は、バドミントン検出で直面する課題を解決するために用いられる。
論文 参考訳(メタデータ) (2023-06-26T08:07:56Z) - Towards Active Learning for Action Spotting in Association Football
Videos [59.84375958757395]
フットボールビデオの分析は困難であり、微妙で多様な時間的パターンを特定する必要がある。
現在のアルゴリズムは、限られた注釈付きデータから学ぶ際に大きな課題に直面している。
次にアノテートすべき最も情報に富んだビデオサンプルを選択する能動的学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-09T11:50:41Z) - A Graph-Based Method for Soccer Action Spotting Using Unsupervised
Player Classification [75.93186954061943]
アクションスポッティングには、ゲームのダイナミクス、イベントの複雑さ、ビデオシーケンスのバリエーションを理解することが含まれる。
本研究では, (a) 選手, 審判, ゴールキーパーをグラフのノードとして識別し, および (b) 時間的相互作用をグラフのシーケンスとしてモデル化することによって, 前者に焦点を当てる。
プレーヤ識別タスクでは,他のモダリティと組み合わせることで,平均mAPの57.83%の総合的な性能が得られる。
論文 参考訳(メタデータ) (2022-11-22T15:23:53Z) - A Reinforcement Learning Badminton Environment for Simulating Player
Tactics (Student Abstract) [4.7376902105662255]
我々はターン型スポーツに焦点をあて、異なる視点でアライリーをシミュレートすることでバドミントン環境を導入する。
このことは、過去の試合を戦術的な調査のためにシミュレートすることでコーチやプレイヤーに恩恵を与えるだけでなく、研究者が彼らの新しいアルゴリズムを迅速に評価することからも恩恵を受ける。
論文 参考訳(メタデータ) (2022-11-22T12:38:12Z) - P2ANet: A Dataset and Benchmark for Dense Action Detection from Table Tennis Match Broadcasting Videos [64.57435509822416]
この作品は、ワールド・テーブルテニス選手権とオリンピアードのプロの卓球試合の放送ビデオから収集された2,721本のビデオクリップで構成されている。
強調局所化と強調認識という2つのアクション検出問題を定式化する。
その結果、TheNameは依然として困難なタスクであり、ビデオからの高密度なアクション検出のための特別なベンチマークとして使用できることを確認した。
論文 参考訳(メタデータ) (2022-07-26T08:34:17Z) - A Survey on Video Action Recognition in Sports: Datasets, Methods and
Applications [60.3327085463545]
本稿では,スポーツ分析のための映像行動認識に関する調査を行う。
サッカー、バスケットボール、バレーボール、ホッケー、フィギュアスケート、体操、卓球、ダイビング、バドミントンなど10種以上のスポーツを紹介します。
本研究では,サッカー,バスケットボール,卓球,フィギュアスケート動作認識をサポートするPaddlePaddleを用いたツールボックスを開発した。
論文 参考訳(メタデータ) (2022-06-02T13:19:36Z) - SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in
Soccer Videos [62.686484228479095]
本稿では,各30の200列からなる複数物体追跡のための新しいデータセットを提案する。
データセットは、バウンディングボックスとトラックレットIDで完全に注釈付けされている。
分析の結果,サッカービデオにおける複数の選手,審判,ボール追跡が解決されるには程遠いことがわかった。
論文 参考訳(メタデータ) (2022-04-14T12:22:12Z) - Sports Video: Fine-Grained Action Detection and Classification of Table
Tennis Strokes from Videos for MediaEval 2021 [0.0]
このタスクは、ビデオからのきめ細かいアクション検出と分類に取り組む。
主に卓球の試合の記録に焦点が当てられている。
本研究は,スポーツのパフォーマンスを解析するために,スポーツコーチや選手のためのツールを作成することを目的としている。
論文 参考訳(メタデータ) (2021-12-16T10:17:59Z) - A New Action Recognition Framework for Video Highlights Summarization in
Sporting Events [9.870478438166288]
YOLO-v3とOpenPoseという2つの古典的オープンソース構造に基づく3レベル予測アルゴリズムを用いて,スポーツビデオストリームを自動的にクリップするフレームワークを提案する。
その結果,スポーツ映像のトレーニングデータを用いて,スポーツ活動のハイライトを正確に行うことができることがわかった。
論文 参考訳(メタデータ) (2020-12-01T04:14:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。