論文の概要: Towards Environmentally Equitable AI
- arxiv url: http://arxiv.org/abs/2412.16539v1
- Date: Sat, 21 Dec 2024 08:46:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:01:50.223055
- Title: Towards Environmentally Equitable AI
- Title(参考訳): 環境に配慮したAIを目指して
- Authors: Mohammad Hajiesmaili, Shaolei Ren, Ramesh K. Sitaraman, Adam Wierman,
- Abstract要約: 我々は、将来のAIシステムの管理の優先事項として、環境エクイティを提唱する。
我々は、地域によって環境コストをかなり分散させるために、エクイティ対応の地理的負荷分散の可能性を明らかにする。
我々は、AIの環境不平等を緩和するシステム管理アプローチの可能性を最大限活用するための、いくつかの今後の方向性を議論することで締めくくります。
- 参考スコア(独自算出の注目度): 23.332350246411124
- License:
- Abstract: The skyrocketing demand for artificial intelligence (AI) has created an enormous appetite for globally deployed power-hungry servers. As a result, the environmental footprint of AI systems has come under increasing scrutiny. More crucially, the current way that we exploit AI workloads' flexibility and manage AI systems can lead to wildly different environmental impacts across locations, increasingly raising environmental inequity concerns and creating unintended sociotechnical consequences. In this paper, we advocate environmental equity as a priority for the management of future AI systems, advancing the boundaries of existing resource management for sustainable AI and also adding a unique dimension to AI fairness. Concretely, we uncover the potential of equity-aware geographical load balancing to fairly re-distribute the environmental cost across different regions, followed by algorithmic challenges. We conclude by discussing a few future directions to exploit the full potential of system management approaches to mitigate AI's environmental inequity.
- Abstract(参考訳): 人工知能(AI)の急激な需要は、グローバルにデプロイされたパワーハングリーサーバに対する巨大な欲求を生み出した。
その結果、AIシステムの環境フットプリントは、より精査されている。
さらに重要なのは、AIワークロードの柔軟性を活用してAIシステムを管理する現在の方法は、場所によって環境に大きく異なる影響をもたらし、環境不平等の懸念を増大させ、意図しない社会技術的結果を生み出します。
本稿では,将来のAIシステムの管理の優先事項として環境保全を提唱し,持続可能なAIのための既存の資源管理の境界を推し進めるとともに,AIフェアネスにユニークな次元を加える。
具体的には,各地域における環境コストの分散化と,それに伴うアルゴリズム的課題について検討する。
我々は、AIの環境不平等を緩和するシステム管理アプローチの可能性を最大限活用するための、いくつかの今後の方向性を議論することで締めくくります。
関連論文リスト
- Responsible AI for Earth Observation [10.380878519901998]
私たちはAIとEOの交差点を体系的に定義し、責任あるAIプラクティスに重点を置いています。
学術と産業の両面からこの探究を導く重要な要素をいくつか挙げる。
本稿は、今後の研究成果に価値ある洞察を提供するとともに、今後の可能性と新たなトレンドを探求する。
論文 参考訳(メタデータ) (2024-05-31T14:47:27Z) - Towards Socially and Environmentally Responsible AI [33.398841227207264]
本稿では,AIの地域的社会的・環境的コストを公平にバランスさせるため,均等な地理的負荷分散(GLB)を提案する。
実験の結果,既存のGLBアルゴリズムは,特定の地域での社会的・環境的コストが不均等に大きいのに対して,提案する同等のGLBは,AIの社会的・環境的コストの負のバランスをとることができることがわかった。
論文 参考訳(メタデータ) (2024-04-23T00:41:41Z) - Artificial Intelligence in Sustainable Vertical Farming [0.0]
持続可能な垂直農業におけるAIの役割を包括的に探求する。
このレビューは、機械学習、コンピュータビジョン、IoT(Internet of Things)、ロボット工学を含む、AIアプリケーションの現状を合成する。
この影響は、経済的な可能性、環境への影響の低減、食料安全保障の向上など、効率の向上を超えて拡大している。
論文 参考訳(メタデータ) (2023-11-17T22:15:41Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Predictable Artificial Intelligence [77.1127726638209]
本稿では予測可能なAIのアイデアと課題を紹介する。
それは、現在および将来のAIエコシステムの重要な妥当性指標を予測できる方法を探る。
予測可能性を達成することは、AIエコシステムの信頼、責任、コントロール、アライメント、安全性を促進するために不可欠である、と私たちは主張する。
論文 参考訳(メタデータ) (2023-10-09T21:36:21Z) - Towards Environmentally Equitable AI via Geographical Load Balancing [40.142341503145275]
本稿では、その地域的負の環境影響のバランスをとることによって、AIの環境不平等に対処する第一歩を踏み出す。
大規模言語AIモデルに対する推論要求を提供する地理的に分散した10のデータセンタを考慮し、トレースベースのシミュレーションを実行する。
その結果,既存のGLBアプローチは環境不平等を増大させる可能性を示し,提案したエクイティ対応GLBは,炭素および水のフットプリントにおける地域格差を著しく低減できることを示した。
論文 参考訳(メタデータ) (2023-06-20T17:13:33Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Towards Sustainable Artificial Intelligence: An Overview of
Environmental Protection Uses and Issues [0.0]
本稿では,明日の生態学的課題に対応するエネルギー消費技術のパラドックスについて述べる。
これは、ユースケースや具体的な例を示すために、グリーンプレイヤー向けのAIから多くの例を引き合いに出している。
環境の次元は、AIの幅広い倫理的問題の一部であり、長期的にAIの持続可能性を保証するために不可欠である。
論文 参考訳(メタデータ) (2022-12-22T14:31:48Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Artificial Intelligence Aided Next-Generation Networks Relying on UAVs [140.42435857856455]
動的環境において,人工知能(AI)による無人航空機(UAV)による次世代ネットワーク支援が提案されている。
AI対応のUAV支援無線ネットワーク(UAWN)では、複数のUAVが航空基地局として使用され、ダイナミックな環境に迅速に適応することができる。
AIフレームワークの利点として、従来のUAWNのいくつかの課題が回避され、ネットワークパフォーマンスが向上し、信頼性が向上し、アジャイル適応性が向上する。
論文 参考訳(メタデータ) (2020-01-28T15:10:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。