論文の概要: Climate And Resource Awareness is Imperative to Achieving Sustainable AI (and Preventing a Global AI Arms Race)
- arxiv url: http://arxiv.org/abs/2502.20016v1
- Date: Thu, 27 Feb 2025 11:54:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:56:34.996373
- Title: Climate And Resource Awareness is Imperative to Achieving Sustainable AI (and Preventing a Global AI Arms Race)
- Title(参考訳): 持続可能なAIを実現するためには、気候と資源の認識が不可欠である(そして、グローバルなAIアームレースの防止)
- Authors: Pedram Bakhtiarifard, Pınar Tözün, Christian Igel, Raghavendra Selvan,
- Abstract要約: 持続可能なAIの可能性を実現するためには、気候と資源の認識の整合が不可欠である、と我々は主張する。
この対立に対処するために、CARAML(Climate and Resource Aware Machine Learning)フレームワークを紹介します。
- 参考スコア(独自算出の注目度): 6.570828098873743
- License:
- Abstract: Sustainability encompasses three key facets: economic, environmental, and social. However, the nascent discourse that is emerging on sustainable artificial intelligence (AI) has predominantly focused on the environmental sustainability of AI, often neglecting the economic and social aspects. Achieving truly sustainable AI necessitates addressing the tension between its climate awareness and its social sustainability, which hinges on equitable access to AI development resources. The concept of resource awareness advocates for broader access to the infrastructure required to develop AI, fostering equity in AI innovation. Yet, this push for improving accessibility often overlooks the environmental costs of expanding such resource usage. In this position paper, we argue that reconciling climate and resource awareness is essential to realizing the full potential of sustainable AI. We use the framework of base-superstructure to analyze how the material conditions are influencing the current AI discourse. We also introduce the Climate and Resource Aware Machine Learning (CARAML) framework to address this conflict and propose actionable recommendations spanning individual, community, industry, government, and global levels to achieve sustainable AI.
- Abstract(参考訳): 持続可能性には経済、環境、社会の3つの重要な側面が含まれる。
しかし、持続的人工知能(AI)に端を発する初期の談話は、主にAIの環境持続可能性に焦点を合わせており、しばしば経済的・社会的側面を無視している。
真に持続可能なAIを達成するためには、その気候認識と、AI開発リソースへの公平なアクセスを前提とした社会的持続性の間の緊張に対処する必要がある。
資源意識の概念は、AIを開発するために必要なインフラへの幅広いアクセスを提唱し、AIイノベーションにおける株式の育成を推進している。
しかし、アクセシビリティ向上に向けたこの取り組みは、資源利用の拡大による環境コストを見落としていることが多い。
本稿では、持続可能なAIの可能性を実現するためには、気候と資源の認識の整合が不可欠であると論じる。
ベーススーパーストラクチャの枠組みを用いて、物質状態が現在のAI談話にどのように影響しているかを分析する。
また、この対立に対処するためにCARAML(Climate and Resource Aware Machine Learning)フレームワークを導入し、持続可能なAIを実現するために個人、コミュニティ、産業、政府、グローバルレベルにわたる実行可能なレコメンデーションを提案します。
関連論文リスト
- From Efficiency Gains to Rebound Effects: The Problem of Jevons' Paradox in AI's Polarized Environmental Debate [69.05573887799203]
この議論の多くは、大きな間接効果に対処することなく直接的影響に集中している。
本稿では,Jevonsのパラドックス問題がどのようにAIに適用され,効率向上がパラドックス的に消費増加を促すかを検討する。
これらの2次の影響を理解するには、ライフサイクルアセスメントと社会経済分析を組み合わせた学際的アプローチが必要であると論じる。
論文 参考訳(メタデータ) (2025-01-27T22:45:06Z) - Towards Environmentally Equitable AI [23.332350246411124]
我々は、将来のAIシステムの管理の優先事項として、環境エクイティを提唱する。
我々は、地域によって環境コストをかなり分散させるために、エクイティ対応の地理的負荷分散の可能性を明らかにする。
我々は、AIの環境不平等を緩和するシステム管理アプローチの可能性を最大限活用するための、いくつかの今後の方向性を議論することで締めくくります。
論文 参考訳(メタデータ) (2024-12-21T08:46:19Z) - Hype, Sustainability, and the Price of the Bigger-is-Better Paradigm in AI [67.58673784790375]
AIパラダイムは、科学的に脆弱なだけでなく、望ましくない結果をもたらすものだ、と私たちは主張する。
第一に、計算要求がモデルの性能よりも早く増加し、不合理な経済要求と不均等な環境フットプリントにつながるため、持続可能ではない。
第二に、健康、教育、気候などの重要な応用は別として、他人を犠牲にして特定の問題に焦点をあてることである。
論文 参考訳(メタデータ) (2024-09-21T14:43:54Z) - Artificial Intelligence in Sustainable Vertical Farming [0.0]
持続可能な垂直農業におけるAIの役割を包括的に探求する。
このレビューは、機械学習、コンピュータビジョン、IoT(Internet of Things)、ロボット工学を含む、AIアプリケーションの現状を合成する。
この影響は、経済的な可能性、環境への影響の低減、食料安全保障の向上など、効率の向上を超えて拡大している。
論文 参考訳(メタデータ) (2023-11-17T22:15:41Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - Artificial Intelligence for Real Sustainability? -- What is Artificial
Intelligence and Can it Help with the Sustainability Transformation? [0.0]
この記事では、AI技術を簡潔に説明し、分類し、理論化する。
そして、持続可能性に関する議論の観点から、その分析を政治的に文脈化する。
持続可能な社会へ進む上で、AIは小さな役割を担っている、と氏は主張する。
論文 参考訳(メタデータ) (2023-06-15T15:40:00Z) - An Artificial Intelligence-based Framework to Achieve the Sustainable
Development Goals in the Context of Bangladesh [1.0276024900942875]
持続可能な発展の柱である社会、環境、経済の3つにAIが与える影響について検討する。
本稿では,AIのネガティブな影響を低減し,この技術の積極性を促進するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-23T17:36:37Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - A Survey on AI Sustainability: Emerging Trends on Learning Algorithms
and Research Challenges [35.317637957059944]
我々は、AIの持続可能性問題に対処できる機械学習アプローチの大きなトレンドについてレビューする。
我々は、既存の研究の大きな限界を強調し、次世代の持続可能なAI技術を開発するための潜在的研究課題と方向性を提案する。
論文 参考訳(メタデータ) (2022-05-08T09:38:35Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - The Short Anthropological Guide to the Study of Ethical AI [91.3755431537592]
ショートガイドは、AI倫理と社会科学の紹介と、AIの開発に関する人類学的視点の両方を兼ね備えている。
AIシステムの社会的影響と、これらのシステムがいかにして我々の世界がどのように機能するかを再考するかについての洞察を、この分野に馴染みのない人たちに提供することを目指している。
論文 参考訳(メタデータ) (2020-10-07T12:25:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。