Topology-Aware 3D Gaussian Splatting: Leveraging Persistent Homology for Optimized Structural Integrity
- URL: http://arxiv.org/abs/2412.16619v3
- Date: Sun, 02 Feb 2025 14:00:10 GMT
- Title: Topology-Aware 3D Gaussian Splatting: Leveraging Persistent Homology for Optimized Structural Integrity
- Authors: Tianqi Shen, Shaohua Liu, Jiaqi Feng, Ziye Ma, Ning An,
- Abstract summary: This work introduces Topology-Aware 3D Gaussian Splatting (Topology-GS)
Topology-GS addresses compromised pixel-level structural integrity due to incomplete initial geometric coverage.
Experiments on three novel-view benchmarks demonstrate that Topology-GS outperforms existing methods in terms of PSNR, SSIM, and LPIPS metrics.
- Score: 3.792470553976718
- License:
- Abstract: Gaussian Splatting (GS) has emerged as a crucial technique for representing discrete volumetric radiance fields. It leverages unique parametrization to mitigate computational demands in scene optimization. This work introduces Topology-Aware 3D Gaussian Splatting (Topology-GS), which addresses two key limitations in current approaches: compromised pixel-level structural integrity due to incomplete initial geometric coverage, and inadequate feature-level integrity from insufficient topological constraints during optimization. To overcome these limitations, Topology-GS incorporates a novel interpolation strategy, Local Persistent Voronoi Interpolation (LPVI), and a topology-focused regularization term based on persistent barcodes, named PersLoss. LPVI utilizes persistent homology to guide adaptive interpolation, enhancing point coverage in low-curvature areas while preserving topological structure. PersLoss aligns the visual perceptual similarity of rendered images with ground truth by constraining distances between their topological features. Comprehensive experiments on three novel-view synthesis benchmarks demonstrate that Topology-GS outperforms existing methods in terms of PSNR, SSIM, and LPIPS metrics, while maintaining efficient memory usage. This study pioneers the integration of topology with 3D-GS, laying the groundwork for future research in this area.
Related papers
- STITCH: Surface reconstrucTion using Implicit neural representations with Topology Constraints and persistent Homology [23.70495314317551]
We present STITCH, a novel approach for neural implicit surface reconstruction of a sparse and irregularly spaced point cloud.
We develop a new differentiable framework based on persistent homology to formulate topological loss terms that enforce the prior of a single 2-manifold object.
arXiv Detail & Related papers (2024-12-24T22:55:35Z) - TSGaussian: Semantic and Depth-Guided Target-Specific Gaussian Splatting from Sparse Views [18.050257821756148]
TSGaussian is a novel framework that combines semantic constraints with depth priors to avoid geometry degradation in novel view synthesis tasks.
Our approach prioritizes computational resources on designated targets while minimizing background allocation.
Extensive experiments demonstrate that TSGaussian outperforms state-of-the-art methods on three standard datasets.
arXiv Detail & Related papers (2024-12-13T11:26:38Z) - Differentiable Topology Estimating from Curvatures for 3D Shapes [5.122262236258208]
This paper introduces a novel, differentiable algorithm tailored to accurately estimate the global topology of 3D shapes.
It ensures high accuracy, efficiency, and instant computation with GPU compatibility.
Experimental results demonstrate the method's superior performance across various datasets.
arXiv Detail & Related papers (2024-11-28T17:14:35Z) - Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks [58.050130177241186]
Noise perturbations often corrupt 3-D point clouds, hindering downstream tasks such as surface reconstruction, rendering, and further processing.
This paper introduces finegranularity dynamic graph convolutional networks called GDGCN, a novel approach to denoising in 3-D point clouds.
arXiv Detail & Related papers (2024-11-21T14:19:32Z) - Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
Topological correctness plays a critical role in many image segmentation tasks.
Most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy.
We propose a novel, graph-based framework for topologically accurate image segmentation.
arXiv Detail & Related papers (2024-11-05T16:20:14Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
We propose a structure-aware Gaussian Splatting method (SAGS) that implicitly encodes the geometry of the scene.
SAGS reflects to state-of-the-art rendering performance and reduced storage requirements on benchmark novel-view synthesis datasets.
arXiv Detail & Related papers (2024-04-29T23:26:30Z) - Learning Topology-Preserving Data Representations [9.710409273484464]
We propose a method for learning topology-preserving data representations (dimensionality reduction)
The core of the method is the minimization of the Representation Topology Divergence (RTD) between original high-dimensional data and low-dimensional representation in latent space.
The proposed method better preserves the global structure and topology of the data manifold than state-of-the-art competitors as measured by linear correlation, triplet distance ranking accuracy, and Wasserstein distance between persistence barcodes.
arXiv Detail & Related papers (2023-01-31T22:55:04Z) - Image Segmentation with Homotopy Warping [10.093435601073484]
topological correctness is crucial for the segmentation of images with fine-scale structures.
By leveraging the theory of digital topology, we identify locations in an image that are critical for topology.
We propose a new homotopy warping loss to train deep image segmentation networks for better topological accuracy.
arXiv Detail & Related papers (2021-12-15T00:33:15Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
This paper proposes a novel unsupervised approach called spatial-spectral clustering with anchor graph (SSCAG) for HSI data clustering.
The proposed SSCAG is competitive against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-24T08:09:27Z) - Self-supervised Geometric Perception [96.89966337518854]
Self-supervised geometric perception is a framework to learn a feature descriptor for correspondence matching without any ground-truth geometric model labels.
We show that SGP achieves state-of-the-art performance that is on-par or superior to the supervised oracles trained using ground-truth labels.
arXiv Detail & Related papers (2021-03-04T15:34:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.