論文の概要: KALL-E:Autoregressive Speech Synthesis with Next-Distribution Prediction
- arxiv url: http://arxiv.org/abs/2412.16846v2
- Date: Wed, 17 Sep 2025 16:01:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-18 14:28:51.287906
- Title: KALL-E:Autoregressive Speech Synthesis with Next-Distribution Prediction
- Title(参考訳): KALL-E:Next-Distribution Predictionを用いた自己回帰音声合成
- Authors: Kangxiang Xia, Xinfa Zhu, Jixun Yao, Wenjie Tian, Wenhao Li, Lei Xie,
- Abstract要約: KALL-Eは、音声合成のための新しい自己回帰(AR)言語モデルである。
連続した音声フレームの次の分布を予測する。
- 参考スコア(独自算出の注目度): 22.35897872821546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce KALL-E, a novel autoregressive (AR) language model for text-to-speech (TTS) synthesis that operates by predicting the next distribution of continuous speech frames. Unlike existing methods, KALL-E directly models the continuous speech distribution conditioned on text, eliminating the need for any diffusion-based components. Specifically, we utilize a Flow-VAE to extract a continuous latent speech representation from waveforms, instead of relying on discrete speech tokens. A single AR Transformer is then trained to predict these continuous speech distributions from text, optimizing a Kullback-Leibler divergence loss as its objective. Experimental results demonstrate that KALL-E achieves superior speech synthesis quality and can even adapt to a target speaker from just a single sample. Importantly, KALL-E provides a more direct and effective approach for utilizing continuous speech representations in TTS.
- Abstract(参考訳): KALL-Eは,音声フレームの次の分布を予測して機能するテキスト音声合成のための,新しい自己回帰型(AR)言語モデルである。
既存の方法とは異なり、KALL-Eはテキスト上で条件付けられた連続的な音声分布を直接モデル化し、拡散ベースのコンポーネントは不要である。
具体的には、Flow-VAEを用いて、離散的な音声トークンに頼るのではなく、波形から連続的な潜時音声表現を抽出する。
1つのAR変換器は、テキストからこれらの連続した音声分布を予測するために訓練され、その目的としてKullback-Leibler分散損失を最適化する。
実験の結果,KALL-Eは音声合成品質が優れ,単一のサンプルからターゲット話者に適応できることがわかった。
重要なこととして、KALL-E は TTS における連続した音声表現を利用するための、より直接的で効果的なアプローチを提供する。
関連論文リスト
- OZSpeech: One-step Zero-shot Speech Synthesis with Learned-Prior-Conditioned Flow Matching [3.05024318465243]
OZSpeechは1ステップのサンプリングで最適な輸送条件流を探索する最初のTS法である。
提案手法は,各音声属性の正確なモデリングを可能にするために,トークン形式における音声の非交叉分解成分を演算する。
実験の結果,提案手法は,コンテンツ精度,自然性,韻律生成,話者スタイルの保存において,既存の手法よりも有望な性能を実現していることがわかった。
論文 参考訳(メタデータ) (2025-05-19T07:31:55Z) - Pseudo-Autoregressive Neural Codec Language Models for Efficient Zero-Shot Text-to-Speech Synthesis [64.12708207721276]
本稿では,AR と NAR を統一した新しい擬似自己回帰(PAR)言語モデリング手法を提案する。
PAR 上に構築した PALLE は 2 段階の TTS システムであり, PAR を初期生成に利用し, NAR を改良する。
実験では、LibriTTSでトレーニングされたPALLEが、大規模データでトレーニングされた最先端システムを上回っていることが示された。
論文 参考訳(メタデータ) (2025-04-14T16:03:21Z) - SimpleSpeech 2: Towards Simple and Efficient Text-to-Speech with Flow-based Scalar Latent Transformer Diffusion Models [64.40250409933752]
我々は、SimpleSpeech 2.0と呼ばれるシンプルで効率的な非自己回帰(NAR)TSフレームワークを実装することで、過去の出版物の上に構築した。
SimpleSpeech 2は、自己回帰(AR)法と非自己回帰(NAR)法の両方の長所を効果的に組み合わせている。
我々は,従来の作業と他の大規模TSモデル(SOTA)と比較して,生成性能と生成速度が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2024-08-25T17:07:39Z) - VALL-E R: Robust and Efficient Zero-Shot Text-to-Speech Synthesis via Monotonic Alignment [101.2489492032816]
VALL-E Rは、堅牢で効率的なゼロショットテキスト音声合成システムである。
この研究は、失語症に罹患した人々のためのスピーチの作成を含む有意義なプロジェクトに適用される可能性がある。
論文 参考訳(メタデータ) (2024-06-12T04:09:44Z) - RALL-E: Robust Codec Language Modeling with Chain-of-Thought Prompting for Text-to-Speech Synthesis [84.57932472551889]
RALL-Eは、音声合成のための堅牢な言語モデリング手法である。
RALL-Eは、ゼロショットTSのWERを、それぞれ5.6%$(リランクなし)から2.5%$と1.0%$に改善した。
論文 参考訳(メタデータ) (2024-04-04T05:15:07Z) - RobustL2S: Speaker-Specific Lip-to-Speech Synthesis exploiting
Self-Supervised Representations [13.995231731152462]
本稿では,Lip-to-Speech合成のためのモジュール化フレームワークRobustL2Sを提案する。
非自己回帰列列列モデルは、自己教師付き視覚特徴を非絡み合った音声内容の表現にマッピングする。
ボコーダは、音声特徴を生波形に変換する。
論文 参考訳(メタデータ) (2023-07-03T09:13:57Z) - PauseSpeech: Natural Speech Synthesis via Pre-trained Language Model and
Pause-based Prosody Modeling [25.966328901566815]
本稿では,事前学習した言語モデルとポーズに基づく韻律モデルを用いた音声合成システムPuaseSpeechを提案する。
実験の結果,PauseSpeechは自然性において過去のモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-06-13T01:36:55Z) - NaturalSpeech 2: Latent Diffusion Models are Natural and Zero-Shot
Speech and Singing Synthesizers [90.83782600932567]
残差ベクトル化器を備えたニューラルオーディオ予測器を応用して量子化潜在ベクトルを得るTSシステムであるNaturalSpeech 2を開発した。
本研究では,NaturalSpeech 2を44K時間の音声・歌唱データを持つ大規模データセットに拡張し,未知話者の音声品質を評価する。
NaturalSpeech 2は、0ショット設定で、韻律/音節の類似性、合成、音声品質の点で、従来のTSシステムよりはるかに優れている。
論文 参考訳(メタデータ) (2023-04-18T16:31:59Z) - Unsupervised TTS Acoustic Modeling for TTS with Conditional Disentangled Sequential VAE [36.50265124324876]
本稿では,テキストと音声のペアを必要としない,教師なしの音声合成モデルであるUTTSを提案する。
このフレームワークは、話者の持続時間モデル、音色特徴(アイデンティティ)、TTS推論のための内容の柔軟な選択を提供する。
実験により、UTTSは人間と客観的評価によって測定された高い自然性と知性のある音声を合成できることが示されている。
論文 参考訳(メタデータ) (2022-06-06T11:51:22Z) - ProsoSpeech: Enhancing Prosody With Quantized Vector Pre-training in
Text-to-Speech [96.0009517132463]
音声の低周波帯域を定量化し、潜在韻律ベクトル(LPV)における韻律特性を圧縮する単語レベル韻律エンコーダを提案する。
次に、LPV予測器を導入し、与えられた単語列を予測し、高品質なTSデータセットで微調整する。
実験結果から, ProsoSpeechはベースライン法と比較してよりリッチな韻律で音声を生成することができることがわかった。
論文 参考訳(メタデータ) (2022-02-16T01:42:32Z) - Direct simultaneous speech to speech translation [29.958601064888132]
本稿では,最初の音声音声合成モデル(Simul-S2ST)を提案する。
モデルは、全音源の音声コンテンツを消費する前に、ターゲット音声の翻訳を生成することができる。
論文 参考訳(メタデータ) (2021-10-15T17:59:15Z) - Direct speech-to-speech translation with discrete units [64.19830539866072]
本稿では、中間テキスト生成に頼ることなく、ある言語から別の言語に音声を変換する直接音声音声翻訳(S2ST)モデルを提案する。
そこで本稿では,ラベルなし音声コーパスから学習した自己教師付き離散表現の予測を提案する。
対象のテキスト書き起こしが利用可能となると、同一の推論パスで2つのモード出力(音声とテキスト)を同時に生成できる、共同音声認識とテキストトレーニングを備えたマルチタスク学習フレームワークを設計する。
論文 参考訳(メタデータ) (2021-07-12T17:40:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。