Structure-aware scale-adaptive networks for cancer segmentation in
whole-slide images
- URL: http://arxiv.org/abs/2109.12617v1
- Date: Sun, 26 Sep 2021 14:25:08 GMT
- Title: Structure-aware scale-adaptive networks for cancer segmentation in
whole-slide images
- Authors: Yibao Sun, Giussepi Lopez, Yaqi Wang, Xingru Huang, Huiyu Zhou, Qianni
Zhang
- Abstract summary: We present a structure-aware scale-adaptive feature selection method for efficient and accurate cancer segmentation.
Based on a segmentation network with a popular encoder-decoder architecture, a scale-adaptive module is proposed for selecting more robust features to represent the vague, non-rigid boundaries.
- Score: 11.55691272822487
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cancer segmentation in whole-slide images is a fundamental step for viable
tumour burden estimation, which is of great value for cancer assessment.
However, factors like vague boundaries or small regions dissociated from viable
tumour areas make it a challenging task. Considering the usefulness of
multi-scale features in various vision-related tasks, we present a
structure-aware scale-adaptive feature selection method for efficient and
accurate cancer segmentation. Based on a segmentation network with a popular
encoder-decoder architecture, a scale-adaptive module is proposed for selecting
more robust features to represent the vague, non-rigid boundaries. Furthermore,
a structural similarity metric is proposed for better tissue structure
awareness to deal with small region segmentation. In addition, advanced designs
including several attention mechanisms and the selective-kernel convolutions
are applied to the baseline network for comparative study purposes. Extensive
experimental results show that the proposed structure-aware scale-adaptive
networks achieve outstanding performance on liver cancer segmentation when
compared to top ten submitted results in the challenge of PAIP 2019. Further
evaluation on colorectal cancer segmentation shows that the scale-adaptive
module improves the baseline network or outperforms the other excellent designs
of attention mechanisms when considering the tradeoff between efficiency and
accuracy.
Related papers
- PINN-EMFNet: PINN-based and Enhanced Multi-Scale Feature Fusion Network for Breast Ultrasound Images Segmentation [5.246262946799736]
This study proposes a PINN-based and Enhanced Multi-Scale Feature Fusion Network.
The network efficiently integrates and globally models multi-scale features through several structural innovations.
In the decoder section, a Multi-Scale Feature Refinement Decoder is employed, which, combined with a Multi-Scale Supervision Mechanism and a correction module, significantly improves segmentation accuracy and adaptability.
arXiv Detail & Related papers (2024-12-22T09:16:00Z) - Optimized Vessel Segmentation: A Structure-Agnostic Approach with Small Vessel Enhancement and Morphological Correction [7.882674026364302]
We propose a structure-agnostic approach incorporating small vessel enhancement and morphological correction for multi-modality vessel segmentation.
Our approach achieves superior segmentation accuracy, generalization, and a 34.6% improvement in connectivity, underscoring its clinical potential.
arXiv Detail & Related papers (2024-11-22T08:38:30Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Hybrid guiding: A multi-resolution refinement approach for semantic
segmentation of gigapixel histopathological images [0.7490318169877296]
We propose a cascaded convolutional neural network design, called H2G-Net, for semantic segmentation.
Design involves a detection stage using a patch-wise method, and a refinement stage using a convolutional autoencoder.
Best design achieved a Dice score of 0.933 on an independent test set of 90 WSIs.
arXiv Detail & Related papers (2021-12-07T02:31:29Z) - RCA-IUnet: A residual cross-spatial attention guided inception U-Net
model for tumor segmentation in breast ultrasound imaging [0.6091702876917281]
The article introduces an efficient residual cross-spatial attention guided inception U-Net (RCA-IUnet) model with minimal training parameters for tumor segmentation.
The RCA-IUnet model follows U-Net topology with residual inception depth-wise separable convolution and hybrid pooling layers.
Cross-spatial attention filters are added to suppress the irrelevant features and focus on the target structure.
arXiv Detail & Related papers (2021-08-05T10:35:06Z) - Automatic Segmentation of Gross Target Volume of Nasopharynx Cancer
using Ensemble of Multiscale Deep Neural Networks with Spatial Attention [2.204996105506197]
We propose a 2.5D Convolutional Neural Network (CNN) to handle the difference of inplane and through-plane resolution.
We also propose a spatial attention module to enable the network to focus on small target, and use channel attention to further improve the segmentation performance.
arXiv Detail & Related papers (2021-01-27T08:20:49Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - DONet: Dual Objective Networks for Skin Lesion Segmentation [77.9806410198298]
We propose a simple yet effective framework, named Dual Objective Networks (DONet), to improve the skin lesion segmentation.
Our DONet adopts two symmetric decoders to produce different predictions for approaching different objectives.
To address the challenge of large variety of lesion scales and shapes in dermoscopic images, we additionally propose a recurrent context encoding module (RCEM)
arXiv Detail & Related papers (2020-08-19T06:02:46Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.