GraphAgent: Agentic Graph Language Assistant
- URL: http://arxiv.org/abs/2412.17029v1
- Date: Sun, 22 Dec 2024 14:13:32 GMT
- Title: GraphAgent: Agentic Graph Language Assistant
- Authors: Yuhao Yang, Jiabin Tang, Lianghao Xia, Xingchen Zou, Yuxuan Liang, Chao Huang,
- Abstract summary: We propose GraphAgent, an automated agent pipeline that addresses explicit graph dependencies and implicit graph-enhanced semantic inter-dependencies.
GraphAgent comprises three key components: (i) a Graph Generator Agent that builds knowledge graphs to reflect complex semantic dependencies; (ii) a Task Planning Agent that interprets diverse user queries and formulates corresponding tasks through agentic self-planning; and (iii) a Task Execution Agent that efficiently executes planned tasks while automating tool matching and invocation in response to user queries.
- Score: 23.28223204340633
- License:
- Abstract: Real-world data is represented in both structured (e.g., graph connections) and unstructured (e.g., textual, visual information) formats, encompassing complex relationships that include explicit links (such as social connections and user behaviors) and implicit interdependencies among semantic entities, often illustrated through knowledge graphs. In this work, we propose GraphAgent, an automated agent pipeline that addresses both explicit graph dependencies and implicit graph-enhanced semantic inter-dependencies, aligning with practical data scenarios for predictive tasks (e.g., node classification) and generative tasks (e.g., text generation). GraphAgent comprises three key components: (i) a Graph Generator Agent that builds knowledge graphs to reflect complex semantic dependencies; (ii) a Task Planning Agent that interprets diverse user queries and formulates corresponding tasks through agentic self-planning; and (iii) a Task Execution Agent that efficiently executes planned tasks while automating tool matching and invocation in response to user queries. These agents collaborate seamlessly, integrating language models with graph language models to uncover intricate relational information and data semantic dependencies. Through extensive experiments on various graph-related predictive and text generative tasks on diverse datasets, we demonstrate the effectiveness of our GraphAgent across various settings. We have made our proposed GraphAgent open-source at: https://github.com/HKUDS/GraphAgent.
Related papers
- nvAgent: Automated Data Visualization from Natural Language via Collaborative Agent Workflow [9.676697360425196]
Natural Language to Visualization (NL2Vis) seeks to convert natural-language descriptions into visual representations of given tables.
We propose a collaborative agent workflow, termed nvAgent, for NL2Vis.
Comprehensive evaluations on the new VisEval benchmark demonstrate that nvAgent consistently surpasses state-of-the-art baselines.
arXiv Detail & Related papers (2025-02-07T16:03:08Z) - A Schema-Guided Reason-while-Retrieve framework for Reasoning on Scene Graphs with Large-Language-Models (LLMs) [5.37125692728042]
SceneGuided RetrieveRwR is a framework for reasoning and planning with graphs.
We show that our framework surpasses existing LLM-based approaches in numerical Q&A and planning tasks.
arXiv Detail & Related papers (2025-02-05T18:50:38Z) - Query-Aware Learnable Graph Pooling Tokens as Prompt for Large Language Models [3.9489815622117566]
Learnable Graph Pooling Token (LGPT) enables flexible and efficient graph representation.
Our method achieves a 4.13% performance improvement on the GraphQA benchmark without training the large language model.
arXiv Detail & Related papers (2025-01-29T10:35:41Z) - Towards Graph Foundation Models: Learning Generalities Across Graphs via Task-Trees [50.78679002846741]
We introduce a novel approach for learning cross-task generalities in graphs.
We propose task-trees as basic learning instances to align task spaces on graphs.
Our findings indicate that when a graph neural network is pretrained on diverse task-trees, it acquires transferable knowledge.
arXiv Detail & Related papers (2024-12-21T02:07:43Z) - RAGraph: A General Retrieval-Augmented Graph Learning Framework [35.25522856244149]
We introduce a novel framework called General Retrieval-Augmented Graph Learning (RAGraph)
RAGraph brings external graph data into the general graph foundation model to improve model generalization on unseen scenarios.
During inference, the RAGraph adeptly retrieves similar toy graphs based on key similarities in downstream tasks.
arXiv Detail & Related papers (2024-10-31T12:05:21Z) - G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [61.93058781222079]
We develop a flexible question-answering framework targeting real-world textual graphs.
We introduce the first retrieval-augmented generation (RAG) approach for general textual graphs.
G-Retriever performs RAG over a graph by formulating this task as a Prize-Collecting Steiner Tree optimization problem.
arXiv Detail & Related papers (2024-02-12T13:13:04Z) - MGNet: Learning Correspondences via Multiple Graphs [78.0117352211091]
Learning correspondences aims to find correct correspondences from the initial correspondence set with an uneven correspondence distribution and a low inlier rate.
Recent advances usually use graph neural networks (GNNs) to build a single type of graph or stack local graphs into the global one to complete the task.
We propose MGNet to effectively combine multiple complementary graphs.
arXiv Detail & Related papers (2024-01-10T07:58:44Z) - One for All: Towards Training One Graph Model for All Classification Tasks [61.656962278497225]
A unified model for various graph tasks remains underexplored, primarily due to the challenges unique to the graph learning domain.
We propose textbfOne for All (OFA), the first general framework that can use a single graph model to address the above challenges.
OFA performs well across different tasks, making it the first general-purpose across-domains classification model on graphs.
arXiv Detail & Related papers (2023-09-29T21:15:26Z) - Unsupervised Task Graph Generation from Instructional Video Transcripts [53.54435048879365]
We consider a setting where text transcripts of instructional videos performing a real-world activity are provided.
The goal is to identify the key steps relevant to the task as well as the dependency relationship between these key steps.
We propose a novel task graph generation approach that combines the reasoning capabilities of instruction-tuned language models along with clustering and ranking components.
arXiv Detail & Related papers (2023-02-17T22:50:08Z) - GRATIS: Deep Learning Graph Representation with Task-specific Topology
and Multi-dimensional Edge Features [27.84193444151138]
We propose the first general graph representation learning framework (called GRATIS)
It can generate a strong graph representation with a task-specific topology and task-specific multi-dimensional edge features from any arbitrary input.
Our framework is effective, robust and flexible, and is a plug-and-play module that can be combined with different backbones and Graph Neural Networks (GNNs)
arXiv Detail & Related papers (2022-11-19T18:42:55Z) - Iterative Context-Aware Graph Inference for Visual Dialog [126.016187323249]
We propose a novel Context-Aware Graph (CAG) neural network.
Each node in the graph corresponds to a joint semantic feature, including both object-based (visual) and history-related (textual) context representations.
arXiv Detail & Related papers (2020-04-05T13:09:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.