An OpenMind for 3D medical vision self-supervised learning
- URL: http://arxiv.org/abs/2412.17041v2
- Date: Fri, 18 Apr 2025 13:14:59 GMT
- Title: An OpenMind for 3D medical vision self-supervised learning
- Authors: Tassilo Wald, Constantin Ulrich, Jonathan Suprijadi, Sebastian Ziegler, Michal Nohel, Robin Peretzke, Gregor Köhler, Klaus H. Maier-Hein,
- Abstract summary: We publish the largest publicly available pre-training dataset comprising 114k 3D brain MRI volumes.<n>We benchmark existing 3D self-supervised learning methods on this dataset for a state-of-the-art CNN and Transformer architecture.
- Score: 1.1223322894276315
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the current state-of-the-art, due to i) varying and small pretraining datasets, ii) varying architectures, and iii) being evaluated on differing downstream datasets. In this paper, we bring clarity to this field and lay the foundation for further method advancements through three key contributions: We a) publish the largest publicly available pre-training dataset comprising 114k 3D brain MRI volumes, enabling all practitioners to pre-train on a large-scale dataset. We b) benchmark existing 3D self-supervised learning methods on this dataset for a state-of-the-art CNN and Transformer architecture, clarifying the state of 3D SSL pre-training. Among many findings, we show that pre-trained methods can exceed a strong from-scratch nnU-Net ResEnc-L baseline. Lastly, we c) publish the code of our pre-training and fine-tuning frameworks and provide the pre-trained models created during the benchmarking process to facilitate rapid adoption and reproduction.
Related papers
- Self-adaptive vision-language model for 3D segmentation of pulmonary artery and vein [18.696258519327095]
This paper proposes a novel framework called Language-guided self-adaptive Cross-Attention Fusion Framework.
Our method adopts pre-trained CLIP as a strong feature extractor for generating the segmentation of 3D CT scans.
We extensively validate our method on a local dataset, which is the largest pulmonary artery-vein CT dataset to date.
arXiv Detail & Related papers (2025-01-07T12:03:02Z) - Revisiting MAE pre-training for 3D medical image segmentation [0.08484806297945031]
Self-Supervised Learning (SSL) presents an exciting opportunity to unlock the potential of vast, untapped clinical datasets.<n> SSL has revolutionized fields like natural language processing and computer vision, its adoption in 3D medical image computing has been limited by three key pitfalls.<n>In this paper, we address these issues by i) leveraging a large-scale dataset of 39k 3D brain MRI volumes and ii) using a Residual U-Net architecture within the state-of-the-art nnU-Net framework.
arXiv Detail & Related papers (2024-10-30T15:42:59Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations [55.022519020409405]
This paper builds the first largest ever multi-modal 3D scene dataset and benchmark with hierarchical grounded language annotations, MMScan.
The resulting multi-modal 3D dataset encompasses 1.4M meta-annotated captions on 109k objects and 7.7k regions as well as over 3.04M diverse samples for 3D visual grounding and question-answering benchmarks.
arXiv Detail & Related papers (2024-06-13T17:59:30Z) - OpenMEDLab: An Open-source Platform for Multi-modality Foundation Models
in Medicine [55.29668193415034]
We present OpenMEDLab, an open-source platform for multi-modality foundation models.
It encapsulates solutions of pioneering attempts in prompting and fine-tuning large language and vision models for frontline clinical and bioinformatic applications.
It opens access to a group of pre-trained foundation models for various medical image modalities, clinical text, protein engineering, etc.
arXiv Detail & Related papers (2024-02-28T03:51:02Z) - SPOT: Scalable 3D Pre-training via Occupancy Prediction for Learning Transferable 3D Representations [76.45009891152178]
Pretraining-finetuning approach can alleviate the labeling burden by fine-tuning a pre-trained backbone across various downstream datasets as well as tasks.
We show, for the first time, that general representations learning can be achieved through the task of occupancy prediction.
Our findings will facilitate the understanding of LiDAR points and pave the way for future advancements in LiDAR pre-training.
arXiv Detail & Related papers (2023-09-19T11:13:01Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - Interpretable 2D Vision Models for 3D Medical Images [47.75089895500738]
This study proposes a simple approach of adapting 2D networks with an intermediate feature representation for processing 3D images.
We show on all 3D MedMNIST datasets as benchmark and two real-world datasets consisting of several hundred high-resolution CT or MRI scans that our approach performs on par with existing methods.
arXiv Detail & Related papers (2023-07-13T08:27:09Z) - Geometric Deep Learning for Structure-Based Drug Design: A Survey [83.87489798671155]
Structure-based drug design (SBDD) leverages the three-dimensional geometry of proteins to identify potential drug candidates.
Recent advancements in geometric deep learning, which effectively integrate and process 3D geometric data, have significantly propelled the field forward.
arXiv Detail & Related papers (2023-06-20T14:21:58Z) - BenchMD: A Benchmark for Unified Learning on Medical Images and Sensors [8.695342954247606]
We present BenchMD, a benchmark that tests how well unified, modality-agnostic methods, including architectures and training techniques, perform on a diverse array of medical tasks.
Our baseline results demonstrate that no unified learning technique achieves strong performance across all modalities, leaving ample room for improvement on the benchmark.
arXiv Detail & Related papers (2023-04-17T17:59:26Z) - Video Pretraining Advances 3D Deep Learning on Chest CT Tasks [63.879848037679224]
Pretraining on large natural image classification datasets has aided model development on data-scarce 2D medical tasks.
These 2D models have been surpassed by 3D models on 3D computer vision benchmarks.
We show video pretraining for 3D models can enable higher performance on smaller datasets for 3D medical tasks.
arXiv Detail & Related papers (2023-04-02T14:46:58Z) - BYOLMed3D: Self-Supervised Representation Learning of Medical Videos
using Gradient Accumulation Assisted 3D BYOL Framework [0.0]
Supervised learning algorithms require a large volumes of balanced data to learn robust representations.
Self-supervised learning algorithms are robust to imbalance in the data and are capable of learning robust representations.
We train a 3D BYOL self-supervised model using gradient accumulation technique to deal with the large number of samples in a batch generally required in a self-supervised algorithm.
arXiv Detail & Related papers (2022-07-31T14:48:06Z) - Towards Open Set 3D Learning: A Benchmark on Object Point Clouds [17.145309633743747]
This paper provides the first broad study on Open Set 3D learning.
We introduce a novel testbed with settings of increasing difficulty in terms of category semantic shift.
We investigate the related out-of-distribution and Open Set 2D literature to understand if and how their most recent approaches are effective on 3D data.
arXiv Detail & Related papers (2022-07-23T17:00:45Z) - Advancing 3D Medical Image Analysis with Variable Dimension Transform
based Supervised 3D Pre-training [45.90045513731704]
This paper revisits an innovative yet simple fully-supervised 3D network pre-training framework.
With a redesigned 3D network architecture, reformulated natural images are used to address the problem of data scarcity.
Comprehensive experiments on four benchmark datasets demonstrate that the proposed pre-trained models can effectively accelerate convergence.
arXiv Detail & Related papers (2022-01-05T03:11:21Z) - Self Context and Shape Prior for Sensorless Freehand 3D Ultrasound
Reconstruction [61.62191904755521]
3D freehand US reconstruction is promising in addressing the problem by providing broad range and freeform scan.
Existing deep learning based methods only focus on the basic cases of skill sequences.
We propose a novel approach to sensorless freehand 3D US reconstruction considering the complex skill sequences.
arXiv Detail & Related papers (2021-07-31T16:06:50Z) - Learning Compositional Shape Priors for Few-Shot 3D Reconstruction [36.40776735291117]
We show that complex encoder-decoder architectures exploit large amounts of per-category data.
We propose three ways to learn a class-specific global shape prior, directly from data.
Experiments on the popular ShapeNet dataset show that our method outperforms a zero-shot baseline by over 40%.
arXiv Detail & Related papers (2021-06-11T14:55:49Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - PointContrast: Unsupervised Pre-training for 3D Point Cloud
Understanding [107.02479689909164]
In this work, we aim at facilitating research on 3D representation learning.
We measure the effect of unsupervised pre-training on a large source set of 3D scenes.
arXiv Detail & Related papers (2020-07-21T17:59:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.