A theoretical treatment of optical metasurfaces as an efficient basis for quantum correlations
- URL: http://arxiv.org/abs/2507.09517v1
- Date: Sun, 13 Jul 2025 07:10:39 GMT
- Title: A theoretical treatment of optical metasurfaces as an efficient basis for quantum correlations
- Authors: Ramaseshan R, Prateek P. Kulkarni, Sharanya Madhusudhan, Kaustav Bhowmick,
- Abstract summary: Entanglement is a cornerstone of quantum technology, playing a key role in quantum computing, cryptography, and information processing.<n>Conventional methods for generating entanglement via optical setups rely on beam splitters, nonlinear media, or quantum dots.<n>In this work, we demonstrate that metasurfaces can serve as a promising platform for generating Bell states through a Hamiltonian-driven spin-entanglement mechanism.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Entanglement is a cornerstone of quantum technology, playing a key role in quantum computing, cryptography, and information processing. Conventional methods for generating entanglement via optical setups rely on beam splitters, nonlinear media, or quantum dots, which often require bulky configurations and precise phase control. In contrast, metasurfaces - ultrathin, engineered optical interfaces - offer a compact and tunable alternative for quantum photonics. In this work, we demonstrate that metasurfaces can serve as a promising platform for generating Bell states through a Hamiltonian-driven spin-entanglement mechanism. By analyzing the system's evolution under a metasurface interaction Hamiltonian, we show that an initially separable spin state evolves into a maximally entangled Bell state. We further study classical and quantum correlations, evaluate the impact of environmental decoherence, and compute quantum discord to quantify correlation robustness beyond entanglement. Our analysis shows that metasurfaces can generate Bell states with a concurrence of about 0.995 and maintain quantum discord for up to 29 microseconds. These results establish metasurfaces as scalable, high-fidelity components for next-generation quantum photonic architectures.
Related papers
- High-fidelity collisional quantum gates with fermionic atoms [0.9185835982622453]
Fermionic quantum computers offer prospect of directly implementing electronic structure problems.<n>We demonstrate collisional entangling gates with fidelities up to 99.75(6)% and lifetimes of Bell states beyond $10,s$ via the control of fermionic atoms in an optical superlattice.
arXiv Detail & Related papers (2025-06-17T16:50:08Z) - Quantum delocalization on correlation landscape: The key to exponentially fast multipartite entanglement generation [0.0]
Entanglement, a hallmark of quantum mechanics, is a vital resource for quantum technologies.
We unveil a novel framework for understanding entanglement generation dynamics in Hamiltonian systems.
Our results provide a transformative tool for understanding and harnessing rapid entanglement production in complex quantum systems.
arXiv Detail & Related papers (2024-04-17T01:05:04Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - A scalable superconducting quantum simulator with long-range
connectivity based on a photonic bandgap metamaterial [0.0]
We present a quantum simulator architecture based on a linear array of qubits locally connected to a superconducting photonic-bandgap metamaterial.
The metamaterial acts both as a quantum bus mediating qubit-qubit interactions, and as a readout channel for multiplexed qubit-state measurement.
We characterize the Hamiltonian of the system using a measurement-efficient protocol based on quantum many-body chaos.
arXiv Detail & Related papers (2022-06-26T06:51:54Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Cooperative quantum phenomena in light-matter platforms [0.34376560669160383]
cooperativity is evident in light-matter platforms where quantum emitter ensembles are interfaced with confined optical modes.
This tutorial provides a set of theoretical tools to tackle the behavior responsible for the onset of cooperativity.
arXiv Detail & Related papers (2021-07-06T15:27:23Z) - Modelling Markovian light-matter interactions for quantum optical
devices in the solid state [0.0]
I analyze fundamental components and processes for quantum optical devices with a focus on solid-state quantum systems.
I make heavy use of an analytic quantum trajectories approach applied to a general Markovian master equation of an optically-active quantum system.
arXiv Detail & Related papers (2021-05-13T23:00:34Z) - Probing Topological Spin Liquids on a Programmable Quantum Simulator [40.96261204117952]
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states.
In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states.
The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators.
arXiv Detail & Related papers (2021-04-09T00:18:12Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Topological photon pairs in a superconducting quantum metamaterial [44.62475518267084]
We use an array of superconducting qubits to engineer a nontrivial quantum metamaterial.
By performing microwave spectroscopy of the fabricated array, we experimentally observe the spectrum of elementary excitations.
We find not only the single-photon topological states but also the bands of exotic bound photon pairs arising due to the inherent anharmonicity of qubits.
arXiv Detail & Related papers (2020-06-23T07:04:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.