論文の概要: ViLBias: A Comprehensive Framework for Bias Detection through Linguistic and Visual Cues , presenting Annotation Strategies, Evaluation, and Key Challenges
- arxiv url: http://arxiv.org/abs/2412.17052v2
- Date: Thu, 09 Jan 2025 02:33:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 13:57:08.716346
- Title: ViLBias: A Comprehensive Framework for Bias Detection through Linguistic and Visual Cues , presenting Annotation Strategies, Evaluation, and Key Challenges
- Title(参考訳): ViLBias: 言語的および視覚的キューによるバイアス検出のための総合的フレームワーク
- Authors: Shaina Raza, Caesar Saleh, Emrul Hasan, Franklin Ogidi, Maximus Powers, Veronica Chatrath, Marcelo Lotif, Roya Javadi, Anam Zahid, Vahid Reza Khazaie,
- Abstract要約: VLBiasは、最先端のLarge Language Models(LLM)とVision-Language Models(VLM)を活用して、ニュースコンテンツの言語的および視覚的バイアスを検出するフレームワークである。
本稿では,多様なニュースソースからのテキストコンテンツと対応する画像からなるマルチモーダルデータセットを提案する。
- 参考スコア(独自算出の注目度): 2.2751168722976587
- License:
- Abstract: The integration of Large Language Models (LLMs) and Vision-Language Models (VLMs) opens new avenues for addressing complex challenges in multimodal content analysis, particularly in biased news detection. This study introduces VLBias, a framework that leverages state-of-the-art LLMs and VLMs to detect linguistic and visual biases in news content. We present a multimodal dataset comprising textual content and corresponding images from diverse news sources. We propose a hybrid annotation framework that combines LLM-based annotations with human review to ensure high-quality labeling while reducing costs and enhancing scalability. Our evaluation compares the performance of state-of-the-art SLMs and LLMs for both modalities (text and images) and the results reveal that while SLMs are computationally efficient, LLMs demonstrate superior accuracy in identifying subtle framing and text-visual inconsistencies. Furthermore, empirical analysis shows that incorporating visual cues alongside textual data improves bias detection accuracy by 3 to 5%. This study provides a comprehensive exploration of LLMs, SLMs, and VLMs as tools for detecting multimodal biases in news content and highlights their respective strengths, limitations, and potential for future applications
- Abstract(参考訳): LLM(Large Language Models)とVLM(Vision-Language Models)の統合は、特にバイアスのあるニュース検出において、マルチモーダルコンテンツ分析における複雑な問題に対処するための新たな道を開く。
本稿では,最新のLLMとVLMを利用してニュースコンテンツの言語的・視覚的バイアスを検出するフレームワークであるVLBiasを紹介する。
本稿では,多様なニュースソースからのテキストコンテンツと対応する画像からなるマルチモーダルデータセットを提案する。
LLMベースのアノテーションと人間によるレビューを組み合わせるハイブリッドアノテーションフレームワークを提案し、コスト削減とスケーラビリティの向上を図りながら高品質なラベリングを実現する。
評価の結果,SLMは計算効率が良いが,LCMは微妙なフレーミングやテキスト-視覚的不整合を識別する上で,優れた精度を示すことがわかった。
さらに,テキストデータとともに視覚的手がかりを取り入れることで,バイアス検出精度が3~5%向上することを示す。
本研究では,ニュースコンテンツ中のマルチモーダルバイアスを検出するツールとしてLLM,SLM,VLMを包括的に探索し,それぞれの強み,限界,将来的な応用の可能性を明らかにする。
関連論文リスト
- Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
大規模言語モデル(LLM)は、オンライン談話における信頼を損なう可能性のあるコンテンツを生成する。
現在の手法はバイナリ分類に重点を置いており、人間とAIのコラボレーションのような現実のシナリオの複雑さに対処できないことが多い。
バイナリ分類を超えてこれらの課題に対処するために,LLM生成コンテンツを検出するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-18T08:14:10Z) - Unveiling Large Language Models Generated Texts: A Multi-Level Fine-Grained Detection Framework [9.976099891796784]
大型言語モデル (LLM) は文法の修正、内容の拡張、文体の改良によって人間の書き方を変えてきた。
既存の検出方法は、主に単一機能分析とバイナリ分類に依存しているが、学術的文脈においてLLM生成テキストを効果的に識別することができないことが多い。
低レベル構造, 高レベル意味, 深層言語的特徴を統合することで, LLM生成テキストを検出する多レベルきめ細粒度検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-18T07:25:00Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Enhancing Advanced Visual Reasoning Ability of Large Language Models [20.32900494896848]
VL(Vision-Language)研究の最近の進歩は、複雑な視覚的推論のための新しいベンチマークを引き起こした。
我々はCVR-LLM(Complex Visual Reasoning Large Language Models)を提案する。
提案手法は,反復的自己修正ループを用いて,画像の詳細なコンテキスト認識記述に変換する。
また、LLMの文脈的理解と推論を強化するために、新しいマルチモーダル・インコンテキスト学習(ICL)手法を導入する。
論文 参考訳(メタデータ) (2024-09-21T02:10:19Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
マルチモーダルな大言語モデル(MLLM)は、膨大な高品質の画像テキストデータセットをトレーニングすることで、大きな進歩を遂げている。
しかし、マスクのような細粒度や空間的に密集した情報をテキストで明示的に伝達することの難しさは、MLLMにとって困難である。
本稿では、特殊な視覚モデルから派生した細粒度の外部知識をMLLMに統合する新しい視覚的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-07-05T17:43:30Z) - Improving Visual Commonsense in Language Models via Multiple Image Generation [41.565399860320966]
既存の大規模言語モデル(LLM)は、主にテキストデータのみを使用して訓練されている。
視覚言語モデルは視覚的に指向するタスクに優れており、基本的なコモンセンス推論のような視覚的でないタスクでは失敗することが多い。
この分散は、基本的なテキストベースの言語推論と堅牢な視覚的理解の統合という、重要な課題を浮き彫りにする。
論文 参考訳(メタデータ) (2024-06-19T15:17:10Z) - Towards Reliable Detection of LLM-Generated Texts: A Comprehensive Evaluation Framework with CUDRT [9.682499180341273]
大規模言語モデル(LLM)はテキスト生成が大幅に進歩しているが、その出力の人間的な品質は大きな課題を呈している。
中国語と英語の総合的な評価フレームワークとバイリンガルベンチマークであるCUDRTを提案する。
このフレームワークは、スケーラブルで再現可能な実験をサポートし、運用の多様性、多言語トレーニングセット、LLMアーキテクチャが検出性能に与える影響を分析する。
論文 参考訳(メタデータ) (2024-06-13T12:43:40Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
LVLM(Large Vision-Language Models)は、コンピュータビジョンや自然言語処理において欠かせないツールとなっている。
本研究は,入力画像に先行するLarge Language Models (LLM) の影響を主に受け,生成したコンテンツに有意なバイアスが生じることを示す。
これらのバイアスを是正し、視覚情報に対するモデルの焦点をリダイレクトするために、我々は2つの単純で訓練のない戦略を導入する。
論文 参考訳(メタデータ) (2024-03-08T12:35:07Z) - Incorporating Visual Experts to Resolve the Information Loss in
Multimodal Large Language Models [121.83413400686139]
本稿では,MLLMの視覚知覚能力を向上させるために,知識の混合強化機構を提案する。
本稿では,マルチタスクエンコーダとビジュアルツールを既存のMLLM訓練と推論パイプラインに組み込む新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-06T02:02:34Z) - A Survey on Detection of LLMs-Generated Content [97.87912800179531]
LLMの生成する内容を検出する能力が最重要視されている。
既存の検出戦略とベンチマークの詳細な概要を提供する。
また、様々な攻撃から守るための多面的アプローチの必要性を示唆する。
論文 参考訳(メタデータ) (2023-10-24T09:10:26Z) - Sight Beyond Text: Multi-Modal Training Enhances LLMs in Truthfulness
and Ethics [32.123919380959485]
MLLM(Multi-modal large language model)は、大規模言語モデル(LLM)に基づいて訓練される。
マルチモーダルなタスクでは優れているが、MLLMの純粋なNLP能力はしばしば過小評価され、テストされていない。
LLMをMLLMに移行するための一般的な戦略である視覚的インストラクションチューニングは、予期せぬ、興味深いことに、改善された真理性と倫理的整合性の両方を達成するのに役立ちます。
論文 参考訳(メタデータ) (2023-09-13T17:57:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。