論文の概要: ViLBias: Detecting and Reasoning about Bias in Multimodal Content
- arxiv url: http://arxiv.org/abs/2412.17052v4
- Date: Wed, 01 Oct 2025 12:49:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-02 17:16:29.670674
- Title: ViLBias: Detecting and Reasoning about Bias in Multimodal Content
- Title(参考訳): ViLBias:マルチモーダルコンテンツにおけるバイアスの検出と推論
- Authors: Shaina Raza, Caesar Saleh, Azib Farooq, Emrul Hasan, Franklin Ogidi, Maximus Powers, Veronica Chatrath, Marcelo Lotif, Karanpal Sekhon, Roya Javadi, Haad Zahid, Anam Zahid, Vahid Reza Khazaie, Zhenyu Yu,
- Abstract要約: ViLBiasは、マルチモーダルニュースにおけるバイアスの検出と推論のためのフレームワークである。
データセットは40,945のテキストペアで構成されている。
その結果,テキストによる画像の検出精度は3~5%向上した。
- 参考スコア(独自算出の注目度): 6.710013984078675
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting bias in multimodal news requires models that reason over text--image pairs, not just classify text. In response, we present ViLBias, a VQA-style benchmark and framework for detecting and reasoning about bias in multimodal news. The dataset comprises 40,945 text--image pairs from diverse outlets, each annotated with a bias label and concise rationale using a two-stage LLM-as-annotator pipeline with hierarchical majority voting and human-in-the-loop validation. We evaluate Small Language Models (SLMs), Large Language Models (LLMs), and Vision--Language Models (VLMs) across closed-ended classification and open-ended reasoning (oVQA), and compare parameter-efficient tuning strategies. Results show that incorporating images alongside text improves detection accuracy by 3--5\%, and that LLMs/VLMs better capture subtle framing and text--image inconsistencies than SLMs. Parameter-efficient methods (LoRA/QLoRA/Adapters) recover 97--99\% of full fine-tuning performance with $<5\%$ trainable parameters. For oVQA, reasoning accuracy spans 52--79\% and faithfulness 68--89\%, both improved by instruction tuning; closed accuracy correlates strongly with reasoning ($r = 0.91$). ViLBias offers a scalable benchmark and strong baselines for multimodal bias detection and rationale quality.
- Abstract(参考訳): マルチモーダルニュースのバイアスを検出するには、テキストを分類するだけでなく、ペアをイメージするモデルが必要である。
これに対して,VQAスタイルのベンチマークと,マルチモーダルニュースにおけるバイアスの検出と推論のためのフレームワークであるViLBiasを提案する。
データセットは、多様なアウトレットから40,945個のテキストイメージペアで構成され、それぞれにバイアスラベルと簡潔な理論的根拠を付与し、階層的な多数決と人間によるループ検証を備えた2段階のLCM-as-annotatorパイプラインを使用する。
SLM(Small Language Models)、LLM(Large Language Models)、VLM(Vision-Language Models)とoVQA(Open-ended reasoning)を比較し、パラメータ効率のチューニング戦略を比較した。
その結果、画像とテキストを併用することで検出精度が3~5倍向上し、LCM/VLMはSLMよりも微妙なフレーミングやテキスト画像の不整合を捕えることができた。
パラメータ効率の高いメソッド(LoRA/QLoRA/Adapters)は、トレーニング可能なパラメータを$<5\%で、完全な微調整性能の97--99\%を回復する。
oVQAの場合、推論精度は52--79-%、忠実度68--89-%で、どちらも命令チューニングによって改善されている。
ViLBiasは、スケーラブルなベンチマークと、マルチモーダルバイアス検出と合理性品質のための強力なベースラインを提供する。
関連論文リスト
- MLLMs are Deeply Affected by Modality Bias [158.64371871084478]
MLLM(Multimodal Large Language Models)の最近の進歩は、テキストや画像などの多様なモダリティを統合する上で、有望な成果を示している。
MLLMはモダリティバイアスに強く影響され、しばしば言語に依存し、視覚入力のような他のモダリティを過小評価する。
本稿では,MLLMはモダリティバイアスの影響を強く受けており,様々なタスクにまたがってその発現を明らかにする。
論文 参考訳(メタデータ) (2025-05-24T11:49:31Z) - AlignVLM: Bridging Vision and Language Latent Spaces for Multimodal Understanding [63.09928907734156]
AlignVLMは視覚的特徴をテキスト埋め込みの重み付き平均値にマッピングする視覚テキストアライメント手法である。
実験の結果,AlignVLMは先行アライメント法と比較して最先端の性能を実現していることがわかった。
論文 参考訳(メタデータ) (2025-02-03T13:34:51Z) - LLM-SEM: A Sentiment-Based Student Engagement Metric Using LLMS for E-Learning Platforms [0.0]
LLM-SEM (Language Model-Based Students Engagement Metric) は,ビデオメタデータと学生コメントの感情分析を利用してエンゲージメントを測定する手法である。
我々は、テキストの曖昧さを軽減し、ビューやいいね!といった重要な特徴を正規化するために、高品質な感情予測を生成する。
包括的メタデータと感情極性スコアを組み合わせることで、コースと授業レベルのエンゲージメントを測定する。
論文 参考訳(メタデータ) (2024-12-18T12:01:53Z) - Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
大規模言語モデル(LLM)は、オンライン談話における信頼を損なう可能性のあるコンテンツを生成する。
現在の手法はバイナリ分類に重点を置いており、人間とAIのコラボレーションのような現実のシナリオの複雑さに対処できないことが多い。
バイナリ分類を超えてこれらの課題に対処するために,LLM生成コンテンツを検出するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-18T08:14:10Z) - Unveiling Large Language Models Generated Texts: A Multi-Level Fine-Grained Detection Framework [9.976099891796784]
大型言語モデル (LLM) は文法の修正、内容の拡張、文体の改良によって人間の書き方を変えてきた。
既存の検出方法は、主に単一機能分析とバイナリ分類に依存しているが、学術的文脈においてLLM生成テキストを効果的に識別することができないことが多い。
低レベル構造, 高レベル意味, 深層言語的特徴を統合することで, LLM生成テキストを検出する多レベルきめ細粒度検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-18T07:25:00Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning [15.919493497867567]
本研究では,VALSEベンチマークを用いたマルチモーダル大規模言語モデル(MLLM)の性能評価を目的とした。
我々は,モデルサイズや事前学習データセットの異なる最先端MLLMの包括的評価を行った。
論文 参考訳(メタデータ) (2024-07-17T11:26:47Z) - Improving Visual Commonsense in Language Models via Multiple Image Generation [41.565399860320966]
既存の大規模言語モデル(LLM)は、主にテキストデータのみを使用して訓練されている。
視覚言語モデルは視覚的に指向するタスクに優れており、基本的なコモンセンス推論のような視覚的でないタスクでは失敗することが多い。
この分散は、基本的なテキストベースの言語推論と堅牢な視覚的理解の統合という、重要な課題を浮き彫りにする。
論文 参考訳(メタデータ) (2024-06-19T15:17:10Z) - Towards Reliable Detection of LLM-Generated Texts: A Comprehensive Evaluation Framework with CUDRT [9.682499180341273]
大規模言語モデル(LLM)はテキスト生成が大幅に進歩しているが、その出力の人間的な品質は大きな課題を呈している。
中国語と英語の総合的な評価フレームワークとバイリンガルベンチマークであるCUDRTを提案する。
このフレームワークは、スケーラブルで再現可能な実験をサポートし、運用の多様性、多言語トレーニングセット、LLMアーキテクチャが検出性能に与える影響を分析する。
論文 参考訳(メタデータ) (2024-06-13T12:43:40Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
LVLM(Large Vision-Language Models)は、コンピュータビジョンや自然言語処理において欠かせないツールとなっている。
本研究は,入力画像に先行するLarge Language Models (LLM) の影響を主に受け,生成したコンテンツに有意なバイアスが生じることを示す。
これらのバイアスを是正し、視覚情報に対するモデルの焦点をリダイレクトするために、我々は2つの単純で訓練のない戦略を導入する。
論文 参考訳(メタデータ) (2024-03-08T12:35:07Z) - Incorporating Visual Experts to Resolve the Information Loss in
Multimodal Large Language Models [121.83413400686139]
本稿では,MLLMの視覚知覚能力を向上させるために,知識の混合強化機構を提案する。
本稿では,マルチタスクエンコーダとビジュアルツールを既存のMLLM訓練と推論パイプラインに組み込む新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-06T02:02:34Z) - A Survey on Detection of LLMs-Generated Content [97.87912800179531]
LLMの生成する内容を検出する能力が最重要視されている。
既存の検出戦略とベンチマークの詳細な概要を提供する。
また、様々な攻撃から守るための多面的アプローチの必要性を示唆する。
論文 参考訳(メタデータ) (2023-10-24T09:10:26Z) - Sight Beyond Text: Multi-Modal Training Enhances LLMs in Truthfulness
and Ethics [32.123919380959485]
MLLM(Multi-modal large language model)は、大規模言語モデル(LLM)に基づいて訓練される。
マルチモーダルなタスクでは優れているが、MLLMの純粋なNLP能力はしばしば過小評価され、テストされていない。
LLMをMLLMに移行するための一般的な戦略である視覚的インストラクションチューニングは、予期せぬ、興味深いことに、改善された真理性と倫理的整合性の両方を達成するのに役立ちます。
論文 参考訳(メタデータ) (2023-09-13T17:57:21Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
本稿では,大規模言語モデル(LLM)の様々な感情分析タスクの実行能力について検討する。
26のデータセット上の13のタスクのパフォーマンスを評価し、ドメイン固有のデータセットに基づいて訓練された小言語モデル(SLM)と比較した。
論文 参考訳(メタデータ) (2023-05-24T10:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。