論文の概要: Style Transfer Dataset: What Makes A Good Stylization?
- arxiv url: http://arxiv.org/abs/2412.17139v1
- Date: Sun, 22 Dec 2024 19:13:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:56:36.285092
- Title: Style Transfer Dataset: What Makes A Good Stylization?
- Title(参考訳): スタイル転送データセット:何が良いスティル化をもたらすのか?
- Authors: Victor Kitov, Valentin Abramov, Mikhail Akhtyrchenko,
- Abstract要約: 画像スタイルの転送を推し進める目的で,新しいデータセットを提案する。
データセットは、さまざまなサイズのコンテンツとスタイルのイメージをカバーし、1-10スケールの3つのアノテーションによって手作業で評価されるスタイリングを含んでいる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We present a new dataset with the goal of advancing image style transfer - the task of rendering one image in the style of another image. The dataset covers various content and style images of different size and contains 10.000 stylizations manually rated by three annotators in 1-10 scale. Based on obtained ratings, we find which factors are mostly responsible for favourable and poor user evaluations and show quantitative measures having statistically significant impact on user grades. A methodology for creating style transfer datasets is discussed. Presented dataset can be used in automating multiple tasks, related to style transfer configuration and evaluation.
- Abstract(参考訳): 我々は、画像スタイルの転送を進めることを目的として、ある画像を別の画像のスタイルでレンダリングするタスクを新たに提示する。
このデータセットは異なる大きさの様々なコンテンツとスタイルのイメージをカバーし、1-10スケールの3つのアノテータによって手作業で評価された10000のスタイリングを含んでいる。
得られた評価結果から,どの因子が好ましくないユーザ評価に大きく寄与しているかを把握し,統計的にユーザ評価に有意な影響を及ぼす定量的指標を示す。
スタイル転送データセットを作成するための方法論について論じる。
提示されたデータセットは、スタイル転送の設定と評価に関連する複数のタスクの自動化に使用することができる。
関連論文リスト
- StyleBrush: Style Extraction and Transfer from a Single Image [19.652575295703485]
ビジュアルコンテンツのスティル化は、オリジナルの構造的特徴を保ちながら、ピクセルレベルで特定のスタイルパターンを追加することを目的としている。
本稿では,参照画像からスタイルを正確にキャプチャし,抽出したスタイルを他の入力ビジュアルコンテンツにブラシするStyleBrushを提案する。
論文 参考訳(メタデータ) (2024-08-18T14:27:20Z) - Measuring Style Similarity in Diffusion Models [118.22433042873136]
画像からスタイル記述子を理解し抽出するためのフレームワークを提案する。
我々のフレームワークは、スタイルが画像の主観的特性であるという洞察を用いてキュレートされた新しいデータセットで構成されている。
また、テキスト・ツー・イメージ・モデルのトレーニングデータセットで使用される画像に対して、生成した画像のスタイルに使用できるスタイル属性記述子を抽出する手法を提案する。
論文 参考訳(メタデータ) (2024-04-01T17:58:30Z) - Any-to-Any Style Transfer: Making Picasso and Da Vinci Collaborate [58.83278629019384]
スタイル転送は、コンテンツ参照のために、ある画像のスタイルを他の画像へのスタイル参照にレンダリングすることを目的としている。
既存のアプローチでは、スタイルイメージの全体的スタイルをグローバルな方法で適用するか、あるいは、スタイルイメージのローカル色とテクスチャを、事前に定義された方法でコンテンツに移行するかのいずれかである。
本稿では,Any-to-Any Style Transferを提案する。Any-to-Any Style Transferは,スタイル画像中の領域のスタイルを対話的に選択し,所定のコンテンツ領域に適用することができる。
論文 参考訳(メタデータ) (2023-04-19T15:15:36Z) - A Unified Arbitrary Style Transfer Framework via Adaptive Contrastive
Learning [84.8813842101747]
Unified Contrastive Arbitrary Style Transfer (UCAST)は、新しいスタイルの学習・伝達フレームワークである。
入力依存温度を導入することで,スタイル伝達のための適応型コントラスト学習方式を提案する。
本フレームワークは,スタイル表現とスタイル伝達のための並列コントラスト学習方式,スタイル分布を効果的に学習するためのドメイン拡張モジュール,スタイル伝達のための生成ネットワークという,3つの重要なコンポーネントから構成される。
論文 参考訳(メタデータ) (2023-03-09T04:35:00Z) - Tackling Data Bias in Painting Classification with Style Transfer [12.88476464580968]
そこで我々は,Kaokoreデータセットのような小さな絵画データセットにおいて,データのバイアスを処理するシステムを提案する。
本システムは,スタイル伝達と分類の2段階からなる。
論文 参考訳(メタデータ) (2023-01-06T14:33:53Z) - Domain Enhanced Arbitrary Image Style Transfer via Contrastive Learning [84.8813842101747]
Contrastive Arbitrary Style Transfer (CAST) は、新しいスタイル表現学習法である。
本フレームワークは,スタイルコード符号化のための多層スタイルプロジェクタ,スタイル分布を効果的に学習するためのドメイン拡張モジュール,画像スタイル転送のための生成ネットワークという,3つのキーコンポーネントから構成される。
論文 参考訳(メタデータ) (2022-05-19T13:11:24Z) - DeepObjStyle: Deep Object-based Photo Style Transfer [31.75300124593133]
スタイル転送の大きな課題の1つは、出力画像と入力画像(スタイルとコンテンツ)の間の適切な画像特徴の監督である。
トレーニングデータに依存しないフレームワークにおけるスタイル管理のためのオブジェクトベースのスタイル転送手法であるDeepStyleを提案する。
論文 参考訳(メタデータ) (2020-12-11T17:02:01Z) - Parameter-Free Style Projection for Arbitrary Style Transfer [64.06126075460722]
本稿では,パラメータフリー,高速,効果的なコンテンツスタイル変換のための特徴レベル変換手法であるStyle Projectionを提案する。
本稿では、任意の画像スタイルの転送にスタイル投影を利用するリアルタイムフィードフォワードモデルを提案する。
論文 参考訳(メタデータ) (2020-03-17T13:07:41Z) - Learning Diverse Fashion Collocation by Neural Graph Filtering [78.9188246136867]
本稿では,グラフニューラルネットワークを用いて,フレキシブルなファッションアイテムセットをモデル化する新しいファッションコロケーションフレームワークであるNeural Graph Filteringを提案する。
エッジベクトルに対称演算を適用することにより、このフレームワークは様々な入力/出力を許容し、それらの順序に不変である。
提案手法を,Polyvoreデータセット,Polyvore-Dデータセット,Amazon Fashionデータセットの3つの一般的なベンチマークで評価した。
論文 参考訳(メタデータ) (2020-03-11T16:17:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。