Markov Process-Based Graph Convolutional Networks for Entity Classification in Knowledge Graphs
- URL: http://arxiv.org/abs/2412.17438v2
- Date: Fri, 27 Dec 2024 11:49:53 GMT
- Title: Markov Process-Based Graph Convolutional Networks for Entity Classification in Knowledge Graphs
- Authors: Johannes Mäkelburg, Yiwen Peng, Mehwish Alam, Tobias Weller, Maribel Acosta,
- Abstract summary: We introduce a Markov process-based architecture into well-known Graph Convolutional Networks (GCNs)
This end-to-end network learns the prediction of class affiliation of entities in Knowledge Graphs within a Markov process.
Experiments show a performance improvement over existing models in several studied architectures and datasets.
- Score: 1.6252896527001486
- License:
- Abstract: Despite the vast amount of information encoded in Knowledge Graphs (KGs), information about the class affiliation of entities remains often incomplete. Graph Convolutional Networks (GCNs) have been shown to be effective predictors of complete information about the class affiliation of entities in KGs. However, these models do not learn the class affiliation of entities in KGs incorporating the complexity of the task, which negatively affects the models prediction capabilities. To address this problem, we introduce a Markov process-based architecture into well-known GCN architectures. This end-to-end network learns the prediction of class affiliation of entities in KGs within a Markov process. The number of computational steps is learned during training using a geometric distribution. At the same time, the loss function combines insights from the field of evidential learning. The experiments show a performance improvement over existing models in several studied architectures and datasets. Based on the chosen hyperparameters for the geometric distribution, the expected number of computation steps can be adjusted to improve efficiency and accuracy during training.
Related papers
- Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
We propose a Graph Structure Self-Contrasting (GSSC) framework that learns graph structural information without message passing.
The proposed framework is based purely on Multi-Layer Perceptrons (MLPs), where the structural information is only implicitly incorporated as prior knowledge.
It first applies structural sparsification to remove potentially uninformative or noisy edges in the neighborhood, and then performs structural self-contrasting in the sparsified neighborhood to learn robust node representations.
arXiv Detail & Related papers (2024-09-09T12:56:02Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - Ensemble Learning for Graph Neural Networks [28.3650473174488]
Graph Neural Networks (GNNs) have shown success in various fields for learning from graph-structured data.
This paper investigates the application of ensemble learning techniques to improve the performance and robustness of GNNs.
arXiv Detail & Related papers (2023-10-22T03:55:13Z) - Distributed Learning over Networks with Graph-Attention-Based
Personalization [49.90052709285814]
We propose a graph-based personalized algorithm (GATTA) for distributed deep learning.
In particular, the personalized model in each agent is composed of a global part and a node-specific part.
By treating each agent as one node in a graph the node-specific parameters as its features, the benefits of the graph attention mechanism can be inherited.
arXiv Detail & Related papers (2023-05-22T13:48:30Z) - Efficient Relation-aware Neighborhood Aggregation in Graph Neural Networks via Tensor Decomposition [4.041834517339835]
We propose a novel knowledge graph that incorporates tensor decomposition within the aggregation function of Graph Conalvolution Network (R-GCN)
Our model enhances the representation of neighboring entities by employing projection matrices of a low-rank tensor defined by relation types.
We adopt a training strategy inspired by contrastive learning to relieve the training limitation of the 1-k-k encoder method inherent in handling vast graphs.
arXiv Detail & Related papers (2022-12-11T19:07:34Z) - KGLM: Integrating Knowledge Graph Structure in Language Models for Link
Prediction [0.0]
We introduce a new entity/relation embedding layer that learns to differentiate distinctive entity and relation types.
We show that further pre-training the language models with this additional embedding layer using the triples extracted from the knowledge graph, followed by the standard fine-tuning phase sets a new state-of-the-art performance for the link prediction task on the benchmark datasets.
arXiv Detail & Related papers (2022-11-04T20:38:12Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
Large-scale graph training is a notoriously challenging problem for graph neural networks (GNNs)
We present a new ensembling training manner, named EnGCN, to address the existing issues.
Our proposed method has achieved new state-of-the-art (SOTA) performance on large-scale datasets.
arXiv Detail & Related papers (2022-10-14T03:43:05Z) - KGNN: Distributed Framework for Graph Neural Knowledge Representation [38.080926752998586]
We develop a novel framework called KGNN to take full advantage of knowledge data for representation learning in the distributed learning system.
KGNN is equipped with GNN based encoder and knowledge aware decoder, which aim to jointly explore high-order structure and attribute information together.
arXiv Detail & Related papers (2022-05-17T12:32:02Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.