Emergence of nonequilibrium Lieb excitations in periodically driven strongly interacting bosons
- URL: http://arxiv.org/abs/2412.17443v1
- Date: Mon, 23 Dec 2024 10:06:21 GMT
- Title: Emergence of nonequilibrium Lieb excitations in periodically driven strongly interacting bosons
- Authors: Hoshu Hiyane, Giedrius Žlabys, Thomas Busch, Shohei Watabe,
- Abstract summary: We study the exact nonequilibrium spectral function of a gas of strongly correlated Tonks-Girardeau bosons subjected to a strong periodic drive.<n>We show that nonequilibrium Lieb modes emerge if the underlying mapped fermions form a Floquet-Fermi sea.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the exact nonequilibrium spectral function of a gas of strongly correlated Tonks-Girardeau bosons subjected to a strong periodic drive. Utilizing the theory of Floquet spectral function in conjunction with the Bose-Fermi mapping theorem, we show that nonequilibrium Lieb modes emerge if the underlying mapped fermions form a Floquet-Fermi sea. In the low-frequency regime, the exact analysis reveals the emergence of characteristic linear Lieb excitations for the bosonic system, while the underlying mapped fermions displays the wide Dirac-like linear dispersion.
Related papers
- Understanding Floquet Resonances in Ultracold Gas Scattering [0.0]
Sharp resonances occur, at which the s-wave scattering length can be tuned to large positive and negative values.
We show that the shape of these resonances is described by a simple formula, and find that both resonance position and prefactor can be altered by the driving strength.
arXiv Detail & Related papers (2025-02-28T19:00:00Z) - Subharmonic spin correlations and spectral pairing in Floquet time crystals [41.94295877935867]
Floquet time crystals are characterized by subharmonic behavior of temporal correlation functions.
We show that their temporal spin correlations are directly related to spectral characteristics.
We discuss possible implications for the phase diagram of the Floquet time crystals.
arXiv Detail & Related papers (2025-01-30T21:30:45Z) - Bound polariton states in the Dicke-Ising model [41.94295877935867]
We present a study of hybrid light-matter excitations in cavity QED materials.
We derive the exact excitations of the system in the thermodynamic limit.
arXiv Detail & Related papers (2024-06-17T18:00:01Z) - Fermionization and collective excitations of 1D polariton lattices [0.0]
We show that the hallmarks of correlation and fermionization in a one-dimensional exciton-polaritons gas can be observed with state-of-the-art technology.
Our work encourages future experiments aimed at observing, for the first time, strongly correlated exciton-polariton physics.
arXiv Detail & Related papers (2024-05-03T17:09:12Z) - Radiative transport in a periodic structure with band crossings [47.82887393172228]
We derive the semi-classical model for the Schr"odinger equation in arbitrary spatial dimensions.
We consider both deterministic and random scenarios.
As a specific application, we deduce the effective dynamics of a wave packet in graphene with randomness.
arXiv Detail & Related papers (2024-02-09T23:34:32Z) - Lattice-induced wavefunction effects on trapped superfluids [0.0]
We derive an effective hydrodynamic theory for ultracold bosons in optical lattices.
In a dynamic process, the wavefunction effects are featured by the eigenfrequency, amplitude, and phase shift of an excited breathing mode.
Our discovery advances the connections between the modern band theory and quantum many-body physics.
arXiv Detail & Related papers (2024-01-25T08:04:47Z) - Fragmented superconductivity in the Hubbard model as solitons in Ginzburg-Landau theory [39.58317527488534]
Superconductivity and charge density waves are observed in close vicinity in strongly correlated materials.
We investigate the nature of such an intertwined state of matter stabilized in the phase diagram of the elementary $t$-$tprime$-$U$ Hubbard model.
We provide conclusive evidence that the macroscopic wave functions of the superconducting fragments are well-described by soliton solutions of a Ginzburg-Landau equation.
arXiv Detail & Related papers (2023-07-21T18:00:07Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Floquet analysis of extended Rabi models based on high-frequency
expansion [4.825076503537852]
We transform two kinds of extended quantum Rabi model, anisotropic Rabi model and asymmetric Rabi model, into rotating frame.
For anisotropic Rabi model, the quasi energy fits well with the numerical results even when the rotating-wave coupling is in the deep-strong coupling regime.
For asymmetric Rabi model, the external bias field which breaks the parity symmetry of total excitation number tends to cluster the upper and lower branches into two bundles.
arXiv Detail & Related papers (2022-02-20T07:34:21Z) - Phases and dynamics of ultracold bosons in a tilted optical lattice [0.0]
We present a brief overview of the phases and dynamics of ultracold bosons in an optical lattice in the presence of a tilt.
We chart the relation of this model to the recently studied system of ultracold Rydberg atoms.
arXiv Detail & Related papers (2021-09-06T18:00:02Z) - Fano interference in quantum resonances from angle-resolved elastic
scattering [62.997667081978825]
We show that probing the angular dependence of the cross section allows us to unveil asymmetric Fano profiles in a single channel shape resonance.
We observe a shift in the peak of the resonance profile in the elastic collisions between metastable helium and deuterium molecules.
arXiv Detail & Related papers (2021-05-12T20:41:25Z) - Quantum kinetics of anomalous and nonlinear Hall effects in topological
semimetals [0.0]
We present a systematic derivation of the semiclassical Boltzmann equation for band structures with the finite Berry curvature.
In particular, this formulation is suitable for the study of nonlinear Hall effect and photogalvanic phenomena.
arXiv Detail & Related papers (2021-02-10T19:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.