Progressive Boundary Guided Anomaly Synthesis for Industrial Anomaly Detection
- URL: http://arxiv.org/abs/2412.17458v1
- Date: Mon, 23 Dec 2024 10:26:26 GMT
- Title: Progressive Boundary Guided Anomaly Synthesis for Industrial Anomaly Detection
- Authors: Qiyu Chen, Huiyuan Luo, Han Gao, Chengkan Lv, Zhengtao Zhang,
- Abstract summary: Unsupervised anomaly detection methods can identify surface defects in industrial images by leveraging only normal samples for training.<n>We propose a novel Progressive Boundary-guided Anomaly Synthesis (PBAS) strategy, which can directionally synthesize crucial feature-level anomalies without auxiliary textures.<n>Our method achieves state-of-the-art performance and the fastest detection speed on three widely used industrial datasets.
- Score: 1.5680795779726031
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised anomaly detection methods can identify surface defects in industrial images by leveraging only normal samples for training. Due to the risk of overfitting when learning from a single class, anomaly synthesis strategies are introduced to enhance detection capability by generating artificial anomalies. However, existing strategies heavily rely on anomalous textures from auxiliary datasets. Moreover, their limitations in the coverage and directionality of anomaly synthesis may result in a failure to capture useful information and lead to significant redundancy. To address these issues, we propose a novel Progressive Boundary-guided Anomaly Synthesis (PBAS) strategy, which can directionally synthesize crucial feature-level anomalies without auxiliary textures. It consists of three core components: Approximate Boundary Learning (ABL), Anomaly Feature Synthesis (AFS), and Refined Boundary Optimization (RBO). To make the distribution of normal samples more compact, ABL first learns an approximate decision boundary by center constraint, which improves the center initialization through feature alignment. AFS then directionally synthesizes anomalies with more flexible scales guided by the hypersphere distribution of normal features. Since the boundary is so loose that it may contain real anomalies, RBO refines the decision boundary through the binary classification of artificial anomalies and normal features. Experimental results show that our method achieves state-of-the-art performance and the fastest detection speed on three widely used industrial datasets, including MVTec AD, VisA, and MPDD. The code will be available at: https://github.com/cqylunlun/PBAS.
Related papers
- Quality-Aware Language-Conditioned Local Auto-Regressive Anomaly Synthesis and Detection [30.77558600436759]
ARAS is a language-conditioned, auto-regressive anomaly synthesis approach.<n>It injects local, text-specified defects into normal images via token-anchored latent editing.<n>It significantly enhances defect realism, preserves fine-grained material textures, and provides continuous semantic control over synthesized anomalies.
arXiv Detail & Related papers (2025-08-05T15:07:32Z) - Generate Aligned Anomaly: Region-Guided Few-Shot Anomaly Image-Mask Pair Synthesis for Industrial Inspection [53.137651284042434]
Anomaly inspection plays a vital role in industrial manufacturing, but the scarcity of anomaly samples limits the effectiveness of existing methods.<n>We propose Generate grained Anomaly (GAA), a region-guided, few-shot anomaly image-mask pair generation framework.<n>GAA generates realistic, diverse, and semantically aligned anomalies using only a small number of samples.
arXiv Detail & Related papers (2025-07-13T12:56:59Z) - Hyperspectral Anomaly Detection Fused Unified Nonconvex Tensor Ring Factors Regularization [29.080180491898805]
We present HAD-EUNTRFR, which incorporates an enhanced unified non-spectral framework (TR) regularization factors.<n>Our proposed method outperforms existing state-of-the-art (SOTA) approaches in terms of terms terms terms accuracy.
arXiv Detail & Related papers (2025-05-23T13:31:13Z) - MathPhys-Guided Coarse-to-Fine Anomaly Synthesis with SQE-Driven Bi-Level Optimization for Anomaly Detection [30.77558600436759]
Anomaly detection is a crucial task in computer vision, yet collecting real-world defect images is inherently difficult.
We introduce a novel pipeline that generates synthetic anomalies through Math-Physics model guidance.
By incorporating physical modeling of cracks, corrosion, and deformation, our method produces realistic defect masks.
arXiv Detail & Related papers (2025-04-17T14:22:27Z) - 3CAD: A Large-Scale Real-World 3C Product Dataset for Unsupervised Anomaly [22.150521360544744]
We propose a new large-scale anomaly detection dataset called 3CAD.
3CAD includes eight different types of manufactured parts, totaling 27,039 high- resolution images labeled with pixel-level anomalies.
This is the largest and first anomaly de-tection dataset dedicated to 3C product quality control.
arXiv Detail & Related papers (2025-02-09T03:37:54Z) - Adaptive Signal Analysis for Automated Subsurface Defect Detection Using Impact Echo in Concrete Slabs [0.0]
This pilot study presents a novel, automated, and scalable methodology for detecting subsurface defect-prone regions in concrete slabs.
The approach integrates advanced signal processing, clustering, and visual analytics to identify subsurface anomalies.
The results demonstrate the robustness of the methodology, consistently identifying defect-prone areas with minimal false positives and few missed defects.
arXiv Detail & Related papers (2024-12-23T20:05:53Z) - Breaking the Bias: Recalibrating the Attention of Industrial Anomaly Detection [20.651257973799527]
Recalibrating Attention of Industrial Anomaly Detection (RAAD) is a framework that systematically decomposes and recalibrates attention maps.<n> HQS dynamically adjusts bit-widths based on the hierarchical nature of attention maps.<n>We validate the effectiveness of RAAD on 32 datasets using a single 3090ti.
arXiv Detail & Related papers (2024-12-11T08:31:47Z) - A Unified Anomaly Synthesis Strategy with Gradient Ascent for Industrial Anomaly Detection and Localization [0.0]
We propose a novel unified framework designed to synthesize a broader coverage of anomalies under the manifold and hypersphere distribution constraints.
GLASS achieves state-of-the-art results on the MVTec AD (detection AUROC of 99.9%), VisA, and MPDD datasets and excels in weak defect detection.
arXiv Detail & Related papers (2024-07-12T15:33:37Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARC is a generalist GAD approach that enables a one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly.
equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset.
Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
arXiv Detail & Related papers (2024-05-27T02:42:33Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
We introduce a prior-less anomaly generation paradigm and develop an innovative unsupervised anomaly detection framework named GRAD.
PatchDiff effectively expose various types of anomaly patterns.
experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation.
arXiv Detail & Related papers (2023-12-26T07:08:06Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
Anomaly labels hinder traditional supervised models in time series anomaly detection.
Various SOTA deep learning techniques, such as self-supervised learning, have been introduced to tackle this issue.
We propose a novel self-supervised learning based Tri-domain Anomaly Detector (TriAD)
arXiv Detail & Related papers (2023-11-19T05:37:18Z) - RoSAS: Deep Semi-Supervised Anomaly Detection with
Contamination-Resilient Continuous Supervision [21.393509817509464]
This paper proposes a novel semi-supervised anomaly detection method, which devises textitcontamination-resilient continuous supervisory signals
Our approach significantly outperforms state-of-the-art competitors by 20%-30% in AUC-PR.
arXiv Detail & Related papers (2023-07-25T04:04:49Z) - Time-series Anomaly Detection via Contextual Discriminative Contrastive
Learning [0.0]
One-class classification methods are commonly used for anomaly detection tasks.
We propose a novel approach inspired by the loss function of DeepSVDD.
We combine our approach with a deterministic contrastive loss from Neutral AD, a promising self-supervised learning anomaly detection approach.
arXiv Detail & Related papers (2023-04-16T21:36:19Z) - GSMFlow: Generation Shifts Mitigating Flow for Generalized Zero-Shot
Learning [55.79997930181418]
Generalized Zero-Shot Learning aims to recognize images from both the seen and unseen classes by transferring semantic knowledge from seen to unseen classes.
It is a promising solution to take the advantage of generative models to hallucinate realistic unseen samples based on the knowledge learned from the seen classes.
We propose a novel flow-based generative framework that consists of multiple conditional affine coupling layers for learning unseen data generation.
arXiv Detail & Related papers (2022-07-05T04:04:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.